- **1.)** Find the characteristic equation
 - a.) y'' + 2y' 3y = 0b.) y'' - 2y' + y = 0c.) 3y'' - 2y' + 6y = 0d.) -2y'' = 7y' - 3y
 - e.) 4y'' = 2y' + 6y

2.) Find the general solution to the 2nd order differential equation

a.) y'' + 3y' + 2y = 0b.) 6y'' - y' - y = 0c.) y'' - 2y' + 2y = 0d.) y'' - 6y' + 9y = 0e.) 4y'' - 4y' - 3y = 0f.) 4y'' + 9y = 0h.) 4y'' - 4y' + y = 0

3.) Solve the initial value problem

a.)
$$y'' + y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$
b.) $y'' + 4y' + 3y = 0$, $y(0) = 2$, $y'(0) = -1$
c.) $6y'' - 5y' + y = 0$, $y(0) = 4$, $y'(0) = 0$
d.) $y'' - 2y' + 5y = 0$, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 2$
e.) $y'' + 4y' + 5y = 0$, $y(0) = 1$, $y'(0) = 0$
f.) $9y'' - 12y' + 4y = 0$, $y(0) = 2$, $y'(0) = -1$
g.) $9y'' + 6y' + 82y = 0$, $y(0) = -1$, $y'(0) = 2$
h.) $y'' - 6y' + 9y = 0$, $y(0) = 0$, $y'(0) = 2$
i.) $y'' + 3y' = 0$, $y(0) = -2$, $y'(0) = 3$
j.) $y'' + 4y' + 4y = 0$, $y(-1) = 2$, $y'(-1) = 1$

4.) Consider a mass-spring system, given by $x''(t) + \gamma x'(t) + x = 0$

- a.) Assume the undamped case, $\gamma = 0$. Solve for x(t). You do NOT need to find C_1 or C_2 .
- b.) What is the period of the oscillations for your system in part (a)? Recall that the period for $\cos(at) = \frac{2\pi}{a}$
- c.) Now assume the underdamped case, $\gamma > 0$ and $\gamma^2 < 4$. Solve for x(t). Your solution should depend on γ . You do NOT need to find C_1 or C_2 .
- d.) What is the period of oscillations for your system in part (c)?
- e.) For what value of γ will the period of your damped oscillator (found in d) be 50% greater than the period of your undamped oscillator (found in b)?

5.) The flow of current in a circuit can be governed by Kirchoff's 2nd law: $LQ'' + RQ' + \frac{1}{C}Q = E(t)$ where Q represents the charge in coulombs, R is the resistance (ohms), C is the capacitance (farads), L is the inductance (henrys), and E(t) represents the impressed voltage (volts) as a function of time. $I = \frac{dQ}{dt}$ represents the current (ampres). See the attached figure.

Assume the series circuit has a capacitor of 10^{-5} farad, a resistor of 3×10^2 ohms, and an inductor of 0.2 henry. The *initial* charge on the capacitor is 10^{-6} coulomb and the *initial* current is 0 ampress. Assume no impressed voltage (i.e., E(t) = 0).

- a.) Write the initial value problem for Q(t).
- b.) Solve the initial value problem to obtain Q(t).
- 6.) For the following, compute the approximate solution using Euler's method. Recall that Euler's method is given by $t_{n+1} = t_n + h$ and $y_{n+1} = y_n + h * f(t_n, y_n)$ for the differential equation y' = f(t, y). h represents the step size. You do not need to fill in the table.
 - a.) $y' = t^2 y$, y(0) = 1. Let h=0.5. Find Euler's approximation for y(2)

t_i	y_i	$f(t_i, y_i) =$	y_{i+1}

b.) y' = y + 2, y(0) = 0. Let h=0.5. Find Euler's approximation for y(2)

t_i	y_i	$f(t_i, y_i) =$	y_{i+1}

7.) Consider the following matrices:

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 6 & 9 & 2 \\ 8 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 5 & 1 \\ 7 & 1 & 7 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 & 4 \\ -6 & 7 & 3 \end{pmatrix}, D = \begin{pmatrix} 9 & 5 \\ 7 & 8 \\ 1 & 2 \end{pmatrix}, E = \begin{pmatrix} 8 & 1 \\ 2 & 7 \end{pmatrix}, F = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

Find the following quantities:

 a.) AB b.) BA c.) CD d.) DC e.) EF

 f.) |E| g.) |F| h.) E^{-1} i.) F^{-1}

j.) Eigenvalues and Eigenvectors of E

k.) Eigenvalues and Eigenvectors of ${\cal F}$

8.) Find the general solution to the system of equations

a.)
$$x'_{1}(t) = x_{1} - 2x_{2}$$

 $x'_{2}(t) = 3x_{1} - 4x_{2}$
b.) $x'_{1}(t) = x_{1} + x_{2}$
 $x'_{2}(t) = 4x_{1} + x_{2}$
c.) $x'_{1}(t) = 2x_{1} - 5x_{2}$
 $x'_{2}(t) = x_{1} - 2x_{2}$
d.) $x'_{1}(t) = 2x_{1} - \frac{5}{2}x_{2}$
 $x'_{2}(t) = \frac{9}{2}x_{1} - x_{2}$
e.) $x'_{1}(t) = 4x_{1} - 2x_{2}$
 $x'_{2}(t) = 8x_{1} - 4x_{2}$
f.) $x'_{1}(t) = -\frac{3}{2}x_{1} + x_{2}$
 $x'_{2}(t) = -\frac{1}{4}x_{1} - \frac{1}{2}x_{2}$

9.) Solve the initial value problems

a.)
$$x'_{1}(t) = x_{1} - 2x_{2}, \quad x_{1}(0) = 0$$

 $x'_{2}(t) = 3x_{1} - 4x_{2}, \quad x_{2}(0) = 2$
b.) $x'_{1}(t) = x_{1} + x_{2}, \quad x_{1}(0) = 1$
 $x'_{2}(t) = 4x_{1} - 2x_{2}, \quad x_{2}(0) = 1$
c.) $x'_{1}(t) = -3x_{1} + 2x_{2}, \quad x_{1}(0) = 1$
 $x'_{2}(t) = -x_{1} - x_{2}, \quad x_{2}(0) = -2$
d.) $x'_{1}(t) = x_{1} - x_{2}, \quad x_{1}(0) = 2$
 $x'_{2}(t) = 5x_{1} - 3x_{2}, \quad x_{2}(0) = -1$

e.)
$$x'_1(t) = -\frac{5}{2}x_1 + \frac{3}{2}x_2, \quad x_1(0) = 3$$

 $x'_2(t) = -\frac{3}{2}x_1 + \frac{1}{2}x_2, \quad x_2(0) = -1$
f.) $x'_1(t) = 7x_1 + x_2, \quad x_1(0) = 2$
 $x'_2(t) = -4x_1 + 3x_2, \quad x_2(0) = -5$

- 10.) Consider the Romeo and Juliet problem. For each of the following examples do the following:
 - Describe, in words, how Romeo and Juliet react to each other and themselves
 - Solve the differential equation governing their relationship
 - Discuss their long-term feelings for each other.
 - a.) R'(t) = J, J'(t) = -R
 - b.) R'(t) = -2R + J, J'(t) = R 2J.
- 11.) Do opposites attract? Consider a Romeo and Juliet problem with the following equations R'(t) = R + J, J'(t) = -R J
 - a.) Describe, in words, how Romeo and Juliet react to each other and themselves
 - b.) Find the general solution to Romeo and Juliets feelings
 - c.) Find the solution if Romeo initially likes Juliet (R(0) = 1) and Juliet initially dislikes Romeo (J(0) = -2). What happens to their relationship?
 - d.) Find the solution if Romeo and Juliet initially like each other, R(0) = 1, J(0) = 1. What happens to the relationship?