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Dynamics of HIV Infection

 Viruses enter cells, and use the cell’s biosynthetic 
machinery to make many more copies of the virus

 Newly made viruses then burst out of the cell, and go on 
to infect other cells

 After a week or so, the virus-specific B cells, helper T 
cells (General), and killer T cells (cytotoxic lymphocytes 
– CTL, soldier) are activated, proliferate, and begin to 
attack the virus-infected cells

0 5 10
YEARS

Total Th Cells

Virus-specific CTLs

Virus

ACUTE 
PHASE



N
C

 S
TA

TE
 U

ni
ve

rs
ity

N
C

 S
TA

TE
 U

ni
ve

rs
ity

Dynamics of HIV Infection (cont’d)

 With many viruses, the end result of the acute phase of 
a viral infection is “sterilization” (invading viruses are 
destroyed), and memory B and T cells are produced to 
protect against a later infection

 For a very few (lucky individuals), HIV infection may 
end in sterilization

 Vast majority, HIV infection leads to a chronic phase –
fierce battle between the immune system and the AIDS 
virus
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Dynamics of HIV Infection (cont’d)

 As the chronic phase progresses, the Th cells slowly 
decreases (because these cells are killed by the viral 
infection)

 Eventually, there are not enough Th cells left to 
provide the help needed by CTLs

 When this happens, CTLs also begins to decline
 Viral load increases – full blown AIDS!

ACUTE 
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What’s Happening at the Cellular Level 
during the Chronic Phase?
 HIV virus is RNA with a protective coat

 After it enters a cell, the RNA is copied by an enzyme 
called reverse transcriptase to make a piece of “copy” 
DNA (cDNA)

 Next, the DNA of the cell is cut by an enzyme (integrase)
carried by the virus, and the viral cDNA is inserted into 
the gap in the cellular DNA (retrovirus)

 Once viral DNA is integrated into cellular DNA, it can just 
stay there or be transcribed to produce intracellular 
copies of virus to be encapsulated and exported for 
extracellular infections

In this latency state, 
the infected cell cannot 

be detected by CTLs
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Cellular Level
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What’s Happening during the 
Chronic Phase? (cont’d)

 The reverse transcriptase enzyme used to copy 
the viral RNA is error-prone
 It makes about one error (mutation) each time it 

copies a piece of viral RNA
 The mutation might kill the virus 
Worse ! – the mutations may help the virus adapt to its 

environment, so that it can become more damaging
 The virus can mutate so that CTLs can no longer 

recognize it
New CTL will have to be activated
 At the same time, the virus continues to replicate

The mutation rate of the AIDS virus 
is so high that it can effectively stay 
one step ahead of CTLs or antibodies 

directed against it
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What’s Happening during the 
Chronic Phase? (cont’d)

 HIV virus specifically targets cells of the 
immune system: helper T cells and 
macrophages
• The docking protein that HIV binds to is the CD4 

(found on surfaces of helper T cells)
• Disrupt the immune system response
• Worse ! – makes them targets for killing by CTLs 

The killing of helper T 
cells that leads to the 
immunosuppression 

eventually results in the 
death of the patient
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Scientific Goals:

Develop models of sufficient fidelity
• to aid in understanding cellular level 

mechanisms (in vitro cellular level data)
• with predictive capabilities -specifically, use 

early acute infection patient data to predict
longitudinal set points! (in vivo system 
level data)

• for use in control in structured treatment 
interruptions (STI) and clinical design 

• to help provide plausibility scenarios for 
remission of progression to aids
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Drug Therapy

 Most anti-HIV drugs (> 20) fall into one of the two 
categories:
• Reverse transcriptase (RT) inhibitors (prevent HIV RNA 

from being converted into DNA)
• Protease inhibitors (PIs) (affect the final stage of the 

viral life cycle – prevent viral particles from being 
packaged for export as infectious agents)

• Usually given in “cocktails” that can be adaptively  
modified  as efficacy decreases or serious side effects 
develop
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Cellular level models - with short term (days) in vitro data
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Involves systems of equations of the form (generally nonlinear)

where       is a production delay (distributed across the 
population of cells). That is, one should write 

where  k  is a probability density to be estimated from aggregate 
data.
Even if k is given, these systems are nontrivial to simulate—
require development  of  fundamental techniques.

( ) ( ) ( ) ( ) ( )a c vt
dV cV t n A t n C t n V t T t
dt

     

0

( ) ( ) ( ) ( ) ( ) ( )a c vt
dV cV t n A t k d n C t n V t T t
dt
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In the inverse problem calculations, we used numerical 
approximation methods for the FDE’s (both discrete delays and 
continuous probability density functions were used). The 
approximation methods were spline-based as developed in
[Banks-Kappel, J. Diff. Eqn.,34(1979),pp.496-522] and [Banks, in Nonlinear 
Phenomena in the Mathematical Sciences(V.Lakshmikantham,
ed.),Academic Press,N.Y.(1982),pp.47-55].

1 1 21 2

In the results reported below and in [2], we estimated of nonlinear
term and measures and associated 

with the delays from acute infection to viral prod

  
 

uct

   
p

p(V,T),  

ion and from 
acute in

       

fection to chronic infection.
[2] H. T. Banks, D. M. Bortz, and S. E. Holte, Incorporation of  variability 

into the modeling of  viral delays in HIV infection dynamics, CRSC-
TR01-25, Sept, 2001; Math Biosciences 183(2003), 63-91.
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1 2Results from inverse problem calculations ( 24.33,  2.88) using  
experimental data from [Rogel, Wu, and Emerman, J. Virology 69(1995),882-888].

in vitro   
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COMPUTATIONAL RESULTS

Carried out statistical analysis of significance of 
adding delays using methodology of

H.T.Banks and B.G.Fitzpatrick, Statistical methods for model 
comparison in parameter estimation for distributed systems,
J. Math. Biology 28(1990), 501-527. See also Chapter 5 of
H.T. Banks and K. Kunisch, Estimation Techniques for Distributed 
Parameter Systems, Birkhauser Boston, 1989.
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Probability density kernels 
k in d ( )=k( )d
with mean  = 24.
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Comparison of forward solutions using  triangular hat, 
inverted quadratic and gamma probability density kernels.
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Sensitivity of solutions wrt mean  in triangular hat kernel. 
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R e s p o n s e  A + C + T = t o t a l  n o .  o f  c e l ls  a s  a  f u n c t i o n  
o f  w i d t h  w  i n  i n v e r t e d  q u a d r a t i c  d e n s i t y k e r n e l .
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M. Emerman in vitro data
i) HTB, D. Bortz and S. Holte, Math. Biosci.,183 

(2003), 63-91
i) HTB and D. Bortz, J. Math. Bio.,50 (2005), 607-625.
ii) HTB and D. Bortz, J. Inverse and Ill-Posed Problems, 

13 (2005), 103-121
iv) HTB and H.K. Nguyen, J. Math. Anal. Appl., 323 
(2005), 146-161.
v) HTB, S.Dediu and H K Nguyen, Math Biosci and Engr.,
4 (2007), 403-430.
vi) HTB, S.Dediu,  and H K Nguyen, IFAC Annual Reviews
in  Control, 31 (2007), 17-26.

 new mathematics on sensitivity wrt probability
distributions of solutions of dynamical systems 
depending on probability measures-directional 
derivatives wrt parameters in a convex subset of TVS
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Needs:(to carry out a careful mathematical analysis)

i) Topology on

ii)  Continuity of 

iii) Compactness of

iv) Approximation of

 (Q )P P
( )P J P

(Q)P

Brief summary of theory:
Prohorov Metric Framework

M

(Q)   
(Q)

by finite
dimensional
P

P
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 ,   proxim ation theory see

H.T.Banks and K.L.Bihari, Modeling and estimating uncertainty in 
parameter estimation, CRSC-TR99-40, NCSU, Dec.,1999; Inverse Problems 
17(2001),1-17.
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APPROXIMATION RESULTS
1.Finite no. of Dirac delta measures (B&Bihari)

from
Banks-Potter:
PBPK models
for TCE,
Math. Biosci.,
192(2004),
pp. 193-225
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2. Finite combinations of piecewise linear splines
2       (Q),  Q 

  (Q) { (Q) :  , }.  (Q)

   ( (Q), ). ,     { } 

     Q    

M
j

Let be a weakly compact subset of L compact
and let F F f f Then

is compact in Moreover if we define l to

be the linear splines on corresponding to the p
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artition
where is dense and define

f f b l b rational Then

if F F f f

we have is dense in 
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FF
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H.T. Banks and G.A. Pinter, A probabilistic multiscale approach to 
hysteresis in shear wave propagation in biotissue, SIAM J. Multiscale 
Model. Simul., 3(2005), pp. 395- 412.



N
C

 S
TA

TE
 U

ni
ve

rs
ity

N
C

 S
TA

TE
 U

ni
ve

rs
ity

System level models-with long term (years) in vivo data

 Based on Callaway-Perelson (2001), Bonhoeffer, et. al. 
(2000) models

 Two target cell populations T1 (CD4 Th-cells) and T2
macrophages)
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Clinical data from E. Rosenberg-Mass General 
Hospital-Early on used POD/PCA to organize and 
reduce data sets

Censored Data: 400 or 50 copies/ml

Carry out inverse problems to estimate parameters
-both at individual and population level

Verify that model has predictive capabilities

Use to design control strategies (STI’s)

INVERSE PROBLEMS WITH CLINICAL DATA
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TYPICAL PATIENT DATA
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ESTIMATION OF PARAMETERS
(individuals)

Data: CD4 counts + censored viral loads for 45 MGH 
patients (4 to 5 years with varied interruption protocols)

20 model parameters + 7 initial conditions = 27 parameter 
values to be estimated with data for each patient

Use ½ (~ 2 years) of rich data set for each individual in 
EM censored data algorithm

2 step optimization: i) hypercube sampling-based DIRECT 
(direct search) on all 27 parameters  ii) gradient based 
optimization in censored data EM algorithm 
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Expected Maximization (EM) algorithm: MLE with 
censored data points replaced by expected values using 
distribution based on truncated log normal with mean, 
variance determined by censoring levels, data and model 
predictions

Use 45 individuals, obtain population averages, then fix 16 
(12 model, 4 IC), then re-estimate 11 (8 model, 3 IC) to 
simulate clinical setting for predictive use of early patient 
data

Details in: B. M. Adams, H. T. Banks, M. Davidian, and 
E. S. Rosenberg ,Model fitting and prediction with HIV 
treatment interruption data, Bull. Math Biology, 
69 (2007),  563-584
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SIMULATION WITH ESTIMATED PARAMETERS
(individuals)-predictive!!!
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SIMULATION WITH ESTIMATED PARAMETERS
(individuals)-predictive!!!
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SIMULATION WITH ESTIMATED PARAMETERS
Model is predictive even when data has only one interruption!!
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SIMULATION WITH ESTIMATED PARAMETERS
But not perfect even with observation of 2 interruptions!



N
C

 S
TA

TE
 U

ni
ve

rs
ity

N
C

 S
TA

TE
 U

ni
ve

rs
ity

SIMULATION WITH ESTIMATED PARAMETERS
Model not predictive for individuals w/o interruption!!!
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CTL (E)/immune response model not adequate 
description  of biology-next generation model:
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New model developed and analyzed in 

HTB, M Davidian, S Hu, GM Kepler, and 
E. Rosenberg, CRSC-TR07-09, March, 2007; J. 
Biological Dynamics, 2 (2008), 357-385.

Again excellent fits to MGH clinical data with
great predictive capabilities
Mechanisms for secondary infections—prediction

of viral blimps while undergoing therapy
But some questions about existence of and control 

between multiple equilibria (high viral load to 
low viral load)
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USE OF MODELS FOR CLINICAL TRIAL DESIGN

Construct “population” distributions for parameters
Draw from these to predict population outcomes to 

different treatment scenarios via simulation

E.S. Rosenberg, M. Davidian, and HTB, Drug and 
Alcohol Dependence, 88S (2007), S41-S51.
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ESTIMATION OF POPULATION PROBABILITY DENSITIES
vs.

HISTOGRAMS OF INDIVIDUAL PARAMETER ESTIMATES
(59 PATIENTS)



N
C

 S
TA

TE
 U

ni
ve

rs
ity

N
C

 S
TA

TE
 U

ni
ve

rs
ity

Problems with Continuous Therapy

 Serious side effects of long-term treatment
 Variable patient adherence; lack of 

availability / high cost of drugs
 Drug efficacy fades as virus mutates, 

becomes resistant
 Eradicating virus decimates immune system
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Why Interrupt Treatment?

 Lessons from “Berlin” patient
– Treated during acute HIV infection phase
– Interruption in therapy 4 weeks later – resulting in 

viral rebound to 5,000 copies (within a week)
– Restarted therapy …
– Second interruption 6 months later prompted by 

acute Hepatitis A infection
– 3 years later, maintains a viral load consistently < 

1,000 copies (usually < 50)

 Reduce side effects and drug treatment cost
 Boost the immune system
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Augment HIV-specific Immunity - Hypothesis

Time

CTL

Th cells

Viral load

Rx Rx Rx Rx

 Will HIV-specific immune response generated 
and maintained during acute infection be 
enough to control the virus?

 If virus returns once therapy is discontinued, 
will this further boost the immune response?
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Modeling Goals

 To obtain insights into the relationship 
between drug therapy and long-term 
immunological control of HIV

 To determine optimal treatment protocols
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Modeling Features

 Multiple stable steady states: viral 
dominant; immune dominant

 Ability to incorporate single or multi-drug 
therapy, appropriate sensitivity to drug 
treatment

 At minimum, model state variables 
(compartments) to reflect HIV biology
 Uninfected and infected Th-cells
 Free plasma virus
 Immune response
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HIV Infection Dynamics Model (cont’d)
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Steady State Analysis

EQ1 EQ2 EQ3

T1 (cells/mL)
T2 (cells/mL)
T1* (cells/mL)
T2* (cells/mL)
V (copies/mL)
E (cells/mL)

1,000,000
3,198
0
0
0 
10

163,573
5
11,945
46
63,919
24

967,839
621
76
6
415
353,108

Local Stability Unstable Stable Stable

Uninfected Viral Dominant Immune Dominant

QUESTION: Does there exist a treatment protocol that would 
take the system from a viral dominant equilibrium state to an 
immune dominant equilibrium state ?
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Control Objective

EQ2

1 2 0  

Stable “unhealthy” 
(viral dominant) 

state

Stable “healthy” 
(immune dominant) 

state

1 2 0  

EQ3

1 2, ? 
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Optimal Drug Treatment: Problem 
Formulation (Open Loop Control)

 Find an optimal drug efficacy pair             such that

subject to

ODE system

* *
1 2( , ) 

1

0

2 2
1 1 2 2

* *
1 2 [ ( ) ( ) ( )( , ) ( ]min )

t

t
J QV t R t R t SE t dt      

1 1 10 1a b  

2 2 20 1a b  
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•Formulate optimality systems with 
state/costate (    ) systems 

•Maximum Principle

•Computation of approximate optimal 
controls

i
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Sub-optimal STI – A Case Study

 Question: Is there an STI therapy that would 
transfer an HIV patient from a viral dominant state 
to an immune dominant state?

*
1
*

2

1

2

(0) 11945

(0) 46
(0) 6391

(0) 163573
(0

9

) 5

(0) 24

T
T

T

T
V
E











Viral 
Dominant 
(stable)
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Phase Plane – Virus versus CTL
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In recent efforts, similar results 
with feedback control!!

State Dependent Riccati Equation
(SDRE) estimator approach
Receding Horizon Control
Extended Kalman Filter (state 

estimation as well as parameter 
estimation)
Application to extended model with

drug-resistant  viral strains
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Summary

Using control theory paradigm in an HIV-therapeutic 
setting, some of our modeling results clearly suggest 

the possibility that STI used in an optimal way will lead 
to immune boosting and subsequent control of viral 

load without the lifetime need for drugs

 HIV Dynamics: Modeling, Data Analysis, and Optimal 
Treatment Protocols, J. Comp. Appl. Math, special issue on 
Mathematics Applied to Immunology, 184 (2005). 10-49,

 Dynamic Multidrug Therapies for HIV: Optimal and STI 
Control Approaches, Math. Biosci. Engr., 1 (2004), 223-241.

 An SDRE Based Estimator Approach for HIV Feedback 
Control, Optimal Control Appl. And Methods, 27 (2006), 93-
121. 

Some publications:
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Current efforts:

Model designed clinical trials for treatment
strategies in acute phase begin in Fall/Winter
2007 at MGH

Continuing efforts on drug resistant viral strains

Efforts on HCV,  CMV and other transplant 
related viruses (in this case immune response is 
voluntarily compromised) MGH


