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Dynamics of HIV Infection

‘ > Viruses enter cells, and use the cell’s biosynthetic
machinery to make many more copies of the virus

Newly made viruses then burst out of the cell, and go on
to Infect other cells

> After a week or so, the virus-specific B cells, helper T
cells (General), and killer T cells (cytotoxic lymphocytes
— CTL, soldier) are activated, proliferate, and begin to
attack the virus-infected cells
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Dynamics of HIV Infection (conta)

+> With many viruses, the end result of the acute phase of
a viral infection i1s “sterilization” (Invading viruses are
destroyed), and memory B and T cells are produced to
protect against a later infection

For a very few (lucky individuals), HIV infection may
end In sterilization

Vast mayority, HIV infection leads to a chronic phase —
fierce battle between the immune system and the AIDS
VIrus
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Dynamics of HIV Infection (conta)

+

> As the chronic phase progresses, the Th cells slowly
decreases (because these cells are killed by the viral
infection)

> Eventually, there are not enough Th cells left to
provide the help needed by CTLs

> When this happens, CTLs also begins to decline

) 3 . /
> Viral load increases — full blown A IDSPR OFOUND
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What’s Happening at the Cellular Level
aduring the Chronic Phase?

» HIV virus is RNA with a protective coat

» After it enters a cell, the RNA is copied by an enzyme
called reverse transcriptase to make a piece of “copy”
DNA (cDNA)

Next, the DNA of the cell is cut by an enzyme (integrase)
carried by the virus, and the viral cDNA is inserted into
the gap in the cellular DNA (retrovirus)

Once viral DNA iIs integrated into cellular DNA, it can just
stay there or be transcribed to produce intracellular
copies of virus to be encapsulated and exported for
extracellular infectigns

In this latency state,
the infected cell cannot
be detected by CTLs
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cellular Level
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What’s Happening during the
+ Chronic Phase? (contd)

> The reverse transcriptase enzyme used to copy
the viral RNA Is error-prone
» It makes about one error (mmutation) each time it
coples a piece of viral RNA
» The mutation might kill the virus

» Worse ! — the mutations may help the virus adapt to its
environment, so that it can become more damaging

» The virus can mutate so that CTLs can no longer
recognize it
» New CTL will have to be activated
» At the same time, the virus continues to replicate

The mutation rate of the AIDS virus

IS so high that it can effectively stay

one step ahead of CTLs or antibodies
directed against it
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What’s Happening during the
+ Chronic Phase? (contd)

> HIV virus specifically targets cells of the
Immune system. helper T cells and
macrophages

e The docking protein that HIV binds to Is the CD4
(Tfound on surfaces of helper T cells)

e Disrupt the immune system response
o Worse ! — makes them targets fpr killing by CTLs

The killing of helper T
cells that leads to the
Immunosuppression
eventually results in the
death of the patient
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HIV Viral Load - Untreated
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%cien tific Goals:

Develop models of sufficient fidelity

e to ard in understanding cellular level
mechanisms (in_vitro cellular level data)

 With predictive capabilities -specifically, use
early acute infection patient data to predict
longitudinal set points! (in_vivo system
level data)

e for use in control in structured treatment
Interruptions (ST1) and clinical design

e to help provide plausibility scenarios for
remission of proqgression to aids




The Irerative Modeling Process

(12 7) Abstraction or Mathemaltization
resulling in a watiteriaiical viodae!

(77)
Formalization of properiies, (]'
relationships and mechanisims ° Formalization of
which result in a brological or Uncertarnty/Variablity in model and

prvsieal moael! dala resulting in a szausizcal modae!

o

° Empirical Observations /)
(7} ,
(experiments and data collection) Model A ﬂﬁ/}/SIS

Changes in urdersiatding of

mechanisms, elc., i the real Interpretation and Comparison
system. (with the real system)

Formaltion Stage. (1), (1), (11).(1v) Solution Stage: (v)
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+Drug Therapy

> Most anti-HIV drugs (= 20) fall into one of the two
categories:

» Reverse transcriptase (RT) inhibitors (prevent HIV RNA
from being converted into DNA)

Protease inhibitors (P1Is) (affect the final stage of the
viral life cycle — prevent viral particles from being
packaged for export as infectious agents)

Usually given In “cocktails” that can be adaptively
modified as efficacy decreases or serious side effects
develop




Cellular level models - with short term (days) in vitro data
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ar

nvolves systems of equations of the form (generally nonlinear)

C:j—\t/ =—CcV(t)+n Alt—7)+nC(t)—nV ()T (t)
where 7 Is a production delay (distributed across the

population of cells). That is, one should write
dVv

— =—cV () + naT Alt—7)k(r)dz+nC(t)—n, V()T (t)

where k is a probability density to be estimated from aggregate
data.

Even if Kk Is given, these systems are nontrivial to simulate—
require development of fundamental technigues.




+ V(t) =—cV (t) + nAjA(t—r)dﬂl(f) +Nn:C(t) - p(V,T)

A) = (1, ~ 5, ~ SX ) A®) —7 [ At—2)d 7z, () + (V. T)

C(t) =(r, —o, —oX(1))C(t)+ 7/j A(t—7)dr,(7)

T(t)=(r, 8, -oXO)T () p(V,T)+S
where C(t) =&, {C(t;7)} = _r[C(t;r)d 7,(r) , A= acute cells

V(1) =V, (1) +Vc (1), Va(t) = & {V,(ti7)} = [V, (t2)dz,(7)

z, 0 delay from acute infection to viral production
., 1 delay from acute infection to chronic infection

NC STATE University

T = target cells, X = total (infected+uninfected) cells




‘In the inverse problem calculations, we used numerical
approximation methods for the FDE’s (both discrete delays and
continuous probability density functions were used). The

approximation methods were spline-based as developed in
[Banks-Kappel, J. Diff. Egn.,34(1979),pp.496-522] and [Banks, in Nonlinear
Phenomena in the Mathematical Sciences(V.Lakshmikantham,
ed.),Academic Press,N.Y.(1982),pp.47-55].

In the results reported below and in [2], we estimated p of nonlinear
term p(V,T), and measures 7, =6, and z, =9, associated

T t7To

with the delays from acute infection to viral production and from
acute infection to chronic infection.

[2] H. T. Banks, D. M. Bortz, and S. E. Holte, Incorporation of variability
Into the modeling of viral delays in HIV infection dynamics, CRSC-
TRO1-25, Sept, 2001; Math Biosciences 183(2003), 63-91.
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x 10" Total Cells vs. Time

1 I T

|
—— Optimized AEE Solution
O Experimental Data

Results from inverse problem calculations (z; =24.33, 7, =2.88) using in vitro
experimental data from [Rogel, WWu, and Emerman, J. Virology 69(1995),882-888].

)
[Z
(D)
=
c
>
"
<
(7))
@)
zZ




COMPUTATIONAL RESULTS

=stimated p’ r 72(q°)
Oy =(p,0,0) 4.28x10° - 8.53x10°
do=(p,7,,0) 128x10° 234 -—  257x10°
q=(p,z,,7,) 1.33x10° 228 32  237x10°

Carried out statistical analysis of significance of
adding delays using methodology of

H.T.Banks and B.G.Fitzpatrick, Statistical methods for model
comparison in parameter estimation for distributed systems,

J. Math. Biology 28(1990), 501-527. See also Chapter 5 of

H.T. Banks and K. Kunisch, Estimation Techniques for Distributed
Parameter Systems, Birkhauser Boston, 1989.
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Can argue that ratio of reduction in residual to residual

IS asymptotic to chi square, I.e.,

3"(p’,0,00-3"(p",7;,0)
3%(p",7,0)

as n — oo, where n is the number of observations(data points)

For the HIV data (in vitro), n=10, we found

=y an

Ur:\I (qOO’qO) =N

UZ((p*,0,0),(p, 7,0)) = 23.2,

U ((p7,0,0),(p7, 7, 73)) = 26,
(both suggesting improvement is statistically significant at

all confidence levels), where as

U ((p",7,0),(p", 7, ,7;)) = 0.84,
suggesting improvement is significant only at confidence levels
at 94% or lower!!



Triangular Hat Kernel

Pm{bability density kernels
Kindz(z)=k(7)dr

with mean ¢ = 24.

Gamma Kernel

Inverse Quadratic Kernel

Kernel Output

Kernel Output
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Vinons V 5 Acurely Infected Cells A
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0

Comparison of forward solutions using triangular hat,
Inverted quadratic and gamma probability density kernels
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Effect of Different Widths for Inverted Quadratic Kernel
T

Total Number of Cells

Response A+C+T=total no. of cells as a function
of width w iIn inverted quadratic density kernel.
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M. Emerman In vitro data

D—\ﬁ B, D. Bortz and S. Holte, Math. Bioscl.,183
(2003), 63-91

/) HTB and D. Bortz, J. Math. Bio.,50 (2005), 607-625.

I1) HTB and D. Bortz, J. Inverse and ll/l-Posed Problem:s,
13 (2005), 103-121

Iv) HTB and H.K. Nguyen, J. Math. Anal. Appl., 323

(2005), 146-161.

v) HTB, S.Dediu and H K Nguyen, Math Bioscr and Engr.,
4 (2007), 403-430.

vi) HTB, S.Dediu, and H K Nguyen, IFAC Annual Review:
Iin Control, 31 (2007), 17-26.

> new mathematics on sensitivity wrt probability
distributions of solutions of dyvnamical systems

depending on probability measures-directional

derivatives wrt parameters in a convex subset of TVS
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Brief summary of theory:
Prohorov Metric Framework

Needs: (to carry out a careful mathematical analysis)

i) Topologyon & = 4 (Q )
i) Continuity of P—J (P)

111) Compactness of i (Q)
iv) Approximation of 4 (Q) by finite
dimensional 2" (Q)



RANDOM VARIABLES and ASSOCIATED METRIC SPACES

4@: F(Q) :{ P . P are probability measures on Q }
(Z(Q), p) Is a metric space with the Prohorov metric p.
e |t Is a complete metric space and Is compact If Q Is compact.

PROHOROV METRIC
p(P*.P)>0 & [ gdP*— | gdP forall geC(Q)

< convergence In expectation
< PY[A]— P[A] for all Borel A = Q with P(0A) =0
For detailson Prohorov metric and an initial
approximation theory, see
H.T.Banks and K.L.Bihari, Modeling and estimating uncertainty in

parameter estimation, CRSC-TR99-40, NCSU, Dec.,1999; Inverse Problems
17(2001),1-17.
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APPROXIMATION RESULTS
1A+iﬂite no. of Dirac delta measures (B&Biharti)

Let Q,, ={0;"}=Qbe such that U,, Q,, isdensein Q, &, =A,

pM (Q)E{PM eZ(Q): P, :ZL ijqJM ,qj“" eQy, p; rat, p, 20}.
Then U,, P" (Q) is dense in £(Q) in the p metric

Bimodal, gM = 3 , Nt =23, Ns =50 (Type I)

from
Banks-Potter:
PBPK models
for TCE,
Math. Biosci.,
192(2004),
pp. 193-225

Probability distribution
(=]



2. Finite combinations of piecewise linear splines

EL’ F be a weakly compact subset of L*(Q), Q compact
and let 2.(Q)={F € 2(Q): F' =1, f € §}. Then .(Q)

is compact in (£(Q), p). Moreover, if we define {I"} to

NC STATE University

be the linear splines on Q corresponding to the partition
Q., where U,, Q,,is dense Q, and define

F'={t": ¥ =2.b"I", b" rational}. Then
it  2,={F, €2Q):F, :ij fMegvy,
we have U, &, is dense in (& (Q),p).

H.T. Banks and G.A. Pinter, A probabilistic multiscale approach to

hysteresis in shear wave propagation in biotissue, SIAM J. Multiscale
Model. Simul., 3(2005), pp. 395- 412.




System level models-with long term (years) in vivo data

*\7 Based on Callaway-Perelson (2001), Bonhoeffer, et. al.
(2000) models

> Two target cell populations T, (CD4 Th-cells) and T,
h

uninfected infectious infected  noninfectious immune effectors
virus virus (CTLs)

NC STATE University
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SYSTEM LEVEL MODEL
Observables:

A, —d,T,—(Q-¢)kVT -
1 171 1/ ™ 1 . T1+T1
A, —d,T, = (L— fe )k, VT, V, +V,

. Therapy:
& = RTI
&, =PI

dtl =(1-&)kVT, —06T, —m,ET,

dT,
dt

dVv . .
d_'[: (1-¢&,)N;6(T, +T,)—cV

*

= (1- fe)k,VT, - 6T, - m,ET,

-[A-¢)p kT, +A- fe)p,k,T,IV

dV,
dt

dE _ . bE(T1*+T2*) - dE(T1*+T2*)

dt - F T +T))+ K, (TU+T))+ K,

=&,N;o(T, +T,)-cV,,

E-5.E
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INVERSE PROBLEMS WITH CLINICAL DATA

Clinical data from E. Rosenberg-Mass General
Hospital-Early on used POD/PCA to organize and
reduce data sets

Censored Data:. 400 or 50 copies/ml

Carry out inverse problems to estimate parameters
-both at /ndividual and population level

Verify that model has predictive capabllities

Use to design control strategies (STI's)




+ TYPICAL PATIENT DATA
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ESTIMATION OF PARAMETERS

+ (individuals)

»Data: CD4 counts + censored viral loads for 45 MGH
patients (4 to 5 years with varied interruption protocols)

»20 model parameters + 7 initial conditions = 27 parameter
values to be estimated with data for each patient

»Use Y2 (— 2 years) of rich data set for each individual In
EM censored data algorithm

»2 step optimization: i) hypercube sampling-based DIRECT
(direct search) on all 27 parameters i) gradient based
optimization in censored data EM algorithm

NC STATE University




%Expected Maximization (EM) algorithm: MLE with
censored data points replaced by expected values using
distribution based on truncated log normal with mean,
variance determined by censoring levels, data and model
predictions

»Use 45 individuals, obtain population averages, then fix 16
(12 model, 4 1C), then re-estimate 11 (8 model, 3 IC) to
simulate clinical setting for predictive use of early patient
data

Details in: B. M. Adams, H. T. Banks, M. Davidian, and
E. S. Rosenberg ,Model fitting and prediction with HIV
treatment interruption data, Bull. Math Biology,

69 (2007), 563-584

NC STATE University
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CD4™ Tcells / ul

virus copies/nt

(individuals)-predictive!!!

Patient #14

SIMULATION WITH ESTIMATED PARAMETERS
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SIMULATION WITH ESTIMATED PARAMETERS
(individuals)-predictive!!!

Patient #4

X data
fit w/half
- = fit w/all
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SIMULATION WITH ESTIMATED PARAMETERS
_|J\/Iode| IS predictive even when data has only one interruption!!
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SIMULATION WITH ESTIMATED PARAMETERS

But not perfect even with observation of 2 interruptions!

Patient #26
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SIMULATION WITH ESTIMATED PARAMETERS

_I\fl_odel not predictive for individuals w/o interruption!!!

Patient #3
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CTL (E)/immune response model not adequate

description of biology-next generation model:

+ CD4 help:
. 4 ™

Non-infected
activated CD4

L

Infected activated CD4
T

.

Yo

M-

infectious

Wirus
i

Immune
memaory

Immune
Effector

E

UaEADE—
LU EAOE—————{

'q—ucnur:'uuwa Hip
SR Y Ty T 1=(3 V== T[] s T—

. Non-infected
| resting CD4 Infected resting CD4

T, I3

Y Y
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The corresponding compartmental ordinary differential equation (ODE)
model for in-host HIV infection dynamies is based on balance laws and is
given by

Ty = —diTy — (1 - &(O)kViTs — 1Ti + pr (725 +04) T

— (1 —&(t))kyViTy — 6T — mE,T? — % T? 4 pr (,g{-,;cr } a,,) T3,
Ty = \Th—ﬁ‘,\— + 1Ty —daTy — (1 — f&(t))kaVi T3 - (TOIU\L +a ) Ts.

Ty + (1= f&(0)kaViTy — daT3 — (2% +ay) T3

‘1 = (1 — EQI:‘I‘)‘:II()SAETJT; — C‘; - ]()3(1 — fll:f:l')plkllTl +(1 - fﬁlltl'lp;,hTQ]‘;
Var = £a(t)10° Np 8T} — cViar,
' b TV dgT " . 11477 agV
Ey,=Ag 4 F+El - ‘!"_#'El — 0 Ey - "Emgl + H;LEQ

Ey = Ey 4 2K paia Fy — dpa ki ——“t-iLE

'ET, T._ J\w Ex+K +Ky 2
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New model developed and analyzed in

HTB, M Davidian, S Hu, GM Kepler, and
E. Rosenberg, CRSC-TRO7-09, March, 2007, J.
Biological Dynamics, 2 (2008), 35 7-385.

» Again excellent fits to MGH clinical data with
great predictive capabilities

» Mechanisms for secondary infections—prediction
of viral blimps while undergoing therapy

» But some questions about existence of and control
between multiple equilibria (high viral load to
low viral load)




USE OF MODELS FOR CLINICAL TRIAL DESIGN

>‘C‘onstruct “population” distributions for parameters
» Draw from these to predict population outcomes to
different treatment scenarios via simulation

E.S. Rosenberg, M. Davidian, and HTB, Drug and
Alcohol Dependence, 88S (2007), S41-551.

NC STATE University




ESTIMATION OF POPULATION PROBABILITY DENSITIES
VS.

HISTOGRAMS OF INDIVIDUAL PARAMETER ESTIMATES
(59 PATIENTS)

param A, B, = 0.01 parame,, B, = 0.001 paramk ., B, = 0.01

|

02 ?.4 06 08
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Problems with Continuous Therapy

+

Serious side effects of long-term treatment

Variable patient adherence, lack of
avallability / high cost of drugs

Drug efficacy fades as virus mutates,
becomes resistant

Eradicating virus decimates immune system

NC STATE University




Why Interrupt Treatment?

+

> Lessons from “Berlin” patient
— Treated during acute HIV infection phase

— Interruption in therapy 4 weeks later — resulting in
viral rebound to 5,000 copies (within a week)

Restarted therapy ...

Second interruption 6 months later prompted by
acute Hepatitis A infection

3 years later, maintains a viral load consistently <
1,000 copies (usually < 50)

> Reduce side effects and drug treatment cost
> Boost the immune system

NC STATE University




Augment HIV-specific Immunity - Hypothesis

+

Th cells

Viral load

Time
> Will HIV-specific immune response generated
and maintained during acute infection be
enough to control the virus?

> If virus returns once therapy Is discontinued,
will this further boost the immune response?

NC STATE University




+

Modeling Goals

> To obtain insights into the relationship
between drug therapy and long-term
Iimmunological control of HIV

> To determine optimal treatment protocols

NC STATE University




Modeling Features

+

» Multiple stable steady states. viral
dominant; immune dominant

» Ability to incorporate single or multi-drug
therapy, appropriate sensitivity to drug
treatment

» At minimum, model state variables
(compartments) to reflect HlV biology
» Uninfected and infected Th-cells
» Free plasma virus
» Immune response

NC STATE University




HI1V Infection Dynamics Model (conta)

+ dT.

CD4 Th-cells d_tl =A —d,T, —(1-+&)kVT, & — RT inhibitors
g, — Pl

macrophages % =4, —d,T, —(1-(f &)k, VT,

a2 e KVT, — 5T, —mET,”

Infected
CD4 Th-cells dt

*

Infected T, = (1- f &)k, VT, — 6T, —m,ET,

macrophages dt

dVv s
Virus —=1+¢g,)N;o(T, +T,)—cV

dt

_[(1_'51)/01kT + (1~ fgl\pzk T ]V
d_E_/1+b(T+T) d(T+T)
dt (T +T,)+K, (T +T, )+K

NC STATE University
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+

Steady State Analysis

EQ,

EQ,

EQ3

T, (cells/mL)
T, (cells/mL)
T,* (cells/mL)
T,* (cells/mL)
V (copies/mL)
E (cells/mL)

1,000,000
3,198

0

0

0

10

163,573
S
11,945
46
63,919
24

967,839
621

76

§)

415
353,108

Local Stability

Unstable

Stable

Stable

Uninfected

Viral Dominant ! Immune Dominant

| —

QUESTION: Does there exist a treatment protocol that would
take the system from a viral dominant equilibrium state to an
Immune dominant equilibrium state ?

NC STATE University




Control Objective

+

Stable “unhealthy” Stable “healthy”
(viral dominant) (immune dominant)
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Optimal Drug Treatment.: Problem
+Formu/a tion (Open Loop Control)

= Find an optimal drug efficacy pair (¢, ,&,) such that

J(&, &) = min jf [QV (t) + R.e2(t) + R,£2(t) — SE(t)]dt

subject to

ODE system

0<a <¢g <

0<a,<¢g, <
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e Formulate optimality systems with
state/costate (¢ ) systems

e Maximum Principle

e Computation of approximate optimal
controls
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Sub-optimal STl — A Case Study
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m Question: Is there an STI therapy that would
transfer an HIV patient from a viral dominant state
to an iImmune dominant state?

T,(0)=5 Dominant
T, (0)=11945 (stable)
Tz* (0) =46

V (0) = 63919

E(0) = 24
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Phase Plane — Virus versus CTL
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~\~ In recent efforts, similar results
with feedback control!!

»State Dependent Riccati Equation
(SDRE) estimator approach

»Receding Horizon Control

»Extended Kalman Filter (state
estimation as well as parameter
estimation)

»Application to extended model with
drug-resistant viral strains
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Summary

+

STI used in an optimal way will lead
to immune boosting and subsequent control of viral
load without the lifetime need for drugs

Some publications:

HI1V Dynamics: Modeling, Data Analysis, and Optimal
Treatment Protocols, J. Comp. Appl. Math, special issue on
Mathematics Applied to Immunology, 184 (2005). 10-49,

Dynamic Multidrug Therapies for HIV: Optimal and ST/
Control Approaches, Math. Biosci. Engr., 1 (2004), 223-241.

An SDRE Based Estimator Approach for HIV Feedback
Control, Optimal Control Appl. And Methods, 27 (2006), 93-
121.
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+ Current efforts:

» Model designed clinical trials for treatment
Strategies in acute phase begin in Fall/Winter
2007 at MGH

» Continuing efforts on drug resistant viral strains
» Efforts on HCV, CMV and other transplant

related viruses (in this case immune response Is
voluntarily compromised) MGH
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