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1 Mechanistic Models of Growth and Decay

In the following sections, we examine and explain the characteristic features of four main types of differential
equation representations that are frequently used to model growth and decay in dynamical systems of equations.
The first is an exponential (also called Malthusian) growth and decay model, for which a population is assumed
to grow at a rate proportional to the size of the population at any given time [3, 4, 12, 14, 20]. The second is
Michaelis-Menten kinetics, which emulates enzyme mediated kinetics. Finally, we use the Gompertz and logistic
(also called Verhulst-Pearl) rate laws, which both involve time dependent growth/decay rates.

1.1 Exponential Growth and Decay

Many of the mechanistic terms used in this paper were formulated using an exponential growth or decay rate. In
these systems, the change in population size is directly proportional to the population size at any given time:

dP

dt
= kP. (1)

Using separation of variables, the solution to (1) is found to be

P (t) = P0e
kt, (2)

where P0 is the concentration of the population at t = 0 (initial population concentration). Although the
exponential model is simple to implement, it poses a problem in the sense that it creates an unbounded solution
because of the constant intrinsic or per capita growth/decay rates

dP
dt

P
= k. (3)

Such rates are unlikely to occur in nature or specifically in a population of cells. To more accurately model the
conversion of one molecule to another, Michaelis-Menten kinetic rates can be used. As we shall explain below,
one can also turn to time varying rates where the growth/decay slows as the size of the population grows/decays.

1.2 Michaelis-Menten Kinetics

In a Michaelis-Menten reaction, the rate of product concentration [P] will initially be proportional to the initial
concentration of a substrate [S]. However, as the concentration of the substrate increases, the rate will lose this
proportionality and approach a maximum velocity, Vmax. The rate equation for this product formation is given
by

d[P (t)]

dt
=

Vmax[S]

km + [S]
. (4)

1.2.1 Michaelis-Menten Derivation

The formulae of Michaelis-Menten kinetics are restricted to approximations by the law of mass action, which
assumes that the amount of product formed in a reaction is proportional to the concentration of reactants
[11, 20]. The kinetics begin with the joining of an enzyme (E) and substrate (S), which bind together to form a
complex (C). The enzyme then facilitates the transformation of the substrate to the product (P), from which the
enzyme then dissociates:

E + S ⇔ C → P.

If we assume E and S bind and dissociate with rates kf and kr, respectively, and that P is formed with rate kcat,
then we can set up the differential equation system:
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dS

dt
= −kfES + krC

dE

dt
= −kfES + krC + kcatC

dC

dt
= kf ES− krES − kcatC

dP

dt
= kcatC. (5)

Although not the original derivation of Michaelis Menten kinetics, George Briggs and John Haldane [3, 8, 20]
came up with an alternate derivation in 1925 in which they assumed that the rate of change of C was negligible in

comparison to the rate of change of S. Accordingly, they assumed that
dC

dt
≈ 0. Thus, kfES − krC − kcatC ≈ 0,

which implies that

C =
kf

kr + kcat
ES, (6)

meaning that
dP

dt
= kcat

(

kf

kr + kcat
ES

)

. If we define km =
kr + kcat

kf
, then

dP

dt
=

kcat

km
ES. (7)

Thus, we now have an equation for the rate of growth for the product in terms of the concentrations of the enzyme
and substrate. However it would be better if we could find the rate in terms of only the concentration of the
substrate. To solve for E, we may substitute km and (6) into the enzyme conservation law

E0 = E + C = E +
kf

kr + kcat
ES = E

(

1 +
S

km

)

which yields

E =
E0

1 + S
km

.

Now that we have a formula for E, we may substitute it into (7), and find that if we define Vmax = kcatE0, we
obtain

dP

dt
=

Skcat

km

E0

1 + S
km

=
kcatSE0

km + S
=

VmaxS

km + S
.

Under the same assumptions, we find
dS

dt
to be the negative of

dP

dt
using (6):

dS

dt
= −kfES + krC = −Ckr − Ckcat + Ckr = −kcatC

= −kcat

(

kfES

kr + kcat

)

= −
kcatES

km

= −
VmaxS

km + S
,
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where km is the amount of substrate required for the rate to reach half of Vmax and S is the concentration of
substrate [2, 3, 20]. Note that if km is significantly greater than S, then this equation may approximate the

exponential function, where k is substituted for
Vmax

km
.

A plot of a Michaelis-Menten reaction is given in Figure 1. Although this may not be applicable for all of the
reactions since some are not enzyme-mediated, it may work as a function with a bounded rate and requires only
two parameter estimates. Alternatives such as the Gompertz and logistic (Verhulst-Pearl) laws also require only
two parameters but, as we shall see next, offer the possible advantages of time-dependent growth/decay rates.
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Figure 1: The rate of a Michaelis-Menten reaction with km = 0.4 and Vmax = 3.4.

1.3 Logistic (Verhulst-Pearl) Growth/Decay

Another model that frequently characterizes population growth/decay is the logistic growth formulation. Under
this growth assumption, the change in population size at a given time is given by:

dP (t)

dt
= αP (t)(1 −

P (t)

K
), (8)

where α > 0 is the growth/decay rate and K is the carrying capacity for the population.

One can readily derive the following properties for logistic models:

• The growth/decay rate (intrinsic or per capita rate) is given by

Ṗ

P
= α

[

1−
P (t)

K

]

.

Note that
Ṗ

P
is positive or negative depending on whether P < K or P > K, respectively, and it is

largest/smallest near the initial population values P0.

• The solution is given by

P (t) =
K

1 + ( K
P0

− 1)e−αt
.

• The solution has a flex point at
K

2
.
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• At small values of initial population (i.e., as P0 → 0+), we have
Ṗ

P
= α

[

1−
P (t)

K

]

→ α ; so initial rates

remain bounded!

1.4 Gompertz Growth/Decay

The Gompertz law is again a mathematical model in which the rate of growth/decay is greatest at the start and
slowest at the end. The dynamics are given by

dP (t)

dt
= αln(

K

P (t)
)P (t) = α[ln(K)− ln(P (t))]P (t), (9)

where K is the carrying capacity (upper/lower asymptote) of the population P (t) and α > 0 is the intrinsic
growth/decay rate. Either of these forms in (9) can be used in our mathematical modeling. The Gompertz law
is often used to model the growth of tumors as well as for population growth, but it has described label loss
rate well in previous studies [5, 21], and therefore will be a candidate model for comparison in our investigations.
Characteristics for Gompertz rates can summarized by:

• The growth/decay rate (per capita) is

Ṗ

P
= α[lnK − lnP ] = αln(

K

P
).

• The solution is given by

P (t) = Ke(ln(
P0
K

)e(−αt)).

• The solution has a flex point at
K

e
.

• At small values of initial population (i.e., as P0 → 0+), we have
Ṗ

P
= αln

K

P
→ ∞ ; so initial rates can

approach unbounded values!
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Modeling Philosophy

We give a brief discussion of certain philosophical notions that are

important in the modeling of physical and biological systems.

Modeling in our view is simply a means for providing a conceptual

framework in which real systems may be investigated. The modeling

process itself is (or should be) most often an iterative process: one

can distinguish in it a number of rather separate steps that usually

must be repeated. This iterative modeling process is schematically

depicted in Figure 5. One begins with the real system under

investigation and pursues the following sequence of steps:
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Formalization of properties,
relationships and mechanisms
which result in a biological or
physical model 

(ii)

The Iterative Modeling Process

Empirical Observations
(experiments and data collection)

(i)

Abstraction or Mathematization
resulting in a mathematical model 

(iii)

Formalization of
Uncertainty/Variablity in model and
data resulting in a statistical model

(iv)

Model Analysis
(v)

Interpretation and Comparison
(with the real system)

(vi)Changes in understanding of
mechanisms, etc., in the real
system.

(vii)

Formation Stage: (i),(ii),(iii),(iv)  Solution Stage: (v)    Interpretation Stage: (vi), (vii)
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15 HIV Models

Many models (elementary) in the early literature-early models were not predictive–
EXAMPLE:
The Nowak-May model is given by

dT

dt
= s1 − d1T − k1TV (42)

dTi

dt
= k1TV − d2T

∗ (43)

dV

dt
= k9T

∗ − d7V (44)

where T is the number of healthy T-cells at time t, T ∗ is the number of infected T-cells
and V is the number of virus.

16 Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that infects T-helper cells of the
immune system and is the causative agent for Acquired Immune Deficiency Syndrome
(AIDS). HIV and AIDS are among the world’s most serious public health concerns,
affecting people of all demographics worldwide, with some regions impacted dispro-
portionately. As of 2003, an estimated 38 million HIV-infected individuals are living
worldwide, with approximately two-thirds in Africa, where 2.2 million people died from
opportunistic infections related to AIDS in 2003 (UNAIDS 2004 Report on the Global
HIV/AIDS Epidemic [31]). Despite many successful public health and clinical interven-
tions since the first identification of HIV-positive patients in 1981, there remains no cure
and the HIV/AIDS epidemic continues to grow.
Highly Active Antiretroviral Therapy (HAART), most commonly administered in the
form of drug cocktails consisting of a protease inhibitor and at least one or more reverse
transcriptase inhibitors, has been highly successful in suppressing HIV in many patients
and therefore improving quality of life. However, contrary to dangerous popular myths,
these drugs do not constitute a cure. While antiretroviral drugs are widely available in
the United States and Western Europe, their cost and side effects may make their use
challenging. In developing nations, UNAIDS estimates that only 7% of the infected pop-
ulation has access to HAART. Access to treatment for and education about this disease
remain serious human rights issues around the world. Improved strategies are needed
for efficient and appropriate use of drug therapy in both developed and underdeveloped
countries.
Studies of the epidemiology of HIV and public health issues such as transmission (inter-
host dynamics) are important. Equally important to investigate are the effective use
and improvement of antiretroviral drugs, which depend on understanding viral behavior
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18 HIV Model and Inverse Problem Techniques

18.1 Model description

Many HIV models have been considered in the literature, including those surveyed in
[35] and [48]. To demonstrate the potential predictive ability of such mathematical
models, we employ the model developed in [26], subsequently modified in [29], and
depicted in Figure 17; other models could be readily treated in our framework. The
model compartments are denoted by variables T1 (type 1 target cells, e.g., CD4+ T-cells,
cells/¹l), T2 (type 2 target cells, e.g., macrophages, cells/¹l), VI (infectious free virus,
RNA copies/ml), VNI (non-infectious free virus, RNA copies/ml), and E (cytotoxic T-
lymphocytes, cells/¹l). A superscript asterisk (∗) denotes infected cells. The available
clinical data include total CD4+ T-cell count, represented by the sum T1+T ∗

1 , and total
free virus, VI + VNI .
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infectious
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c c

Figure 17: Schematic of compartmental HIV infection dynamics model. Only key path-
ways are indicated in the schematic – for further details, see the system of differential
equations (45) below.

While the remaining compartments T2, T
∗
2 , and E were not observed in the data used

in this paper, they are important for modeling and predicting long-term longitudinal
data. The presence of a secondary target cell population T2 helps to satisfy a model-
ing requirement suggested by Callaway and Perelson [35] in their 2002 review paper: a
reasonable model of HIV infection predicts a non-zero steady-state viral load, even in
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the presence of effective drug therapy. Patients subjected to drug therapy often success-
fully suppress virus for a long time, potentially at undetectable levels. However, some
reservoir or mechanism exists that almost invariably causes the virus to grow out to de-
tectable levels upon removal of drug therapy. Hence one does not expect incorporation
of drug therapy in the model, at a sensible efficacy, to drive the viral load to zero, but
rather reduce it considerably, perhaps below the assay limits of quantification. One way
to incorporate this is shown in Figure 17, where there are two co-circulating populations
of target cells, potentially representing CD4+ T-lymphocytes (T1) and macrophages or
other HIV-targeted cells (T2). The two cell populations may have different activation re-
quirements or susceptibility to drug therapy, represented by the different rate constants,
thus potentially creating a non-zero, but low viral load steady state. This is crucial for
modeling our long time horizon data, where patients may remain on treatment for an
extended time. The differential efficacy also enables the model to exhibit reasonable
sensitivity of the viral load equilibrium to treatment efficacy. For a survey of models
and discussion of which exhibit reasonable sensitivity to drug efficacy, consult [35].
The documented importance of the immune system in responding to HIV infection (and
especially its apparent crucial role during structured treatment interruptions) strongly
motivates the inclusion of at least one model compartment representing immune response
to the pathogen. We therefore include a measure E of cytotoxic T-lymphocyte (CTL)
CD8+ response to HIV infection. While the presently available data do not directly
quantify the presence of HIV-specific CTLs, these immune responders are important for
control of infected cells and may eventually be correlated to available epitope-challenge
data. It is known that the immune response system is much more complicated than as
represented in a single (composite) compartment denoted as CTL effectors E. Indeed,
while present knowledge is incomplete, there are strong indications that a more complex
modeling view of immune response involving naive and activated classes of CD4+ and
HIV-specific CD8+ cells as well as memory and latent reservoir classes will be important
in understanding the chronic versus acute response of the immune system to HIV-1
infection [43, 46].

The corresponding compartmental ordinary differential equation (ODE) model for in-

host HIV infection dynamics is given by (45). This model is essentially one suggested in

Callaway–Perelson [35], but includes an immune response compartment and dynamics

as suggested by Bonhoeffer, et. al. [34]. This compartment, denoted by E, represents
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CTLs. The adapted system of ODEs is given by

Ṫ1 = ¸1 − d1T1 − (1− ²̄1(t)) k1VIT1 (45a)

Ṫ2 = ¸2 − d2T2 − (1− f ²̄1(t))k2VIT2 (45b)

Ṫ ∗
1 = (1− ²̄1(t))k1VIT1 − ±T ∗

1 −m1ET ∗
1 (45c)

Ṫ ∗
2 = (1− f ²̄1(t))k2VIT2 − ±T ∗

2 −m2ET ∗
2 (45d)

V̇I = (1− ²̄2(t))10
3NT±(T

∗
1 + T ∗

2 )− cVI (45e)

− (1− ²̄1(t))10
3k1T1VI − (1− f ²̄1(t))10

3k2T2VI

V̇NI = ²̄2(t)10
3NT±(T

∗
1 + T ∗

2 )− cVNI (45f)

Ė = ¸E +
bE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kb
E − dE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kd
E − ±EE,

(45g)

together with an initial condition vector

(T1(0), T
∗
1 (0), T2(0), T

∗
2 (0), VI(0), VNI(0), E(0))T .

Here the factors 103 are introduced to convert between microliter and milliliter scales,
preserving the units from some of the published papers.
As is common in models of HIV infection, infected cells T ∗

i result from encounters be-
tween uninfected target cells Ti and infectious free virus VI in a well-mixed environment.
As noted above, this model involves two co-circulating populations of target cells, per-
haps representing CD4+ T-lymphocytes (T1) and macrophages (T2). The natural infec-
tion rate ki may differ between the two populations, which could account for suspected
differences in activation rates between lymphocytes and macrophages. The treatment
factor ²̄1(t), described further below, represents a reverse transcriptase inhibitor (RTI)
that blocks new infections and is potentially more effective in population 1 (T1, T

∗
1 )

than in population 2 (T2, T
∗
2 ), where the efficacy is f ²̄1, with f ∈ [0, 1]. The differences

in infection rates and treatment efficacy help create a low, but non-zero, infected cell
steady state for T ∗

2 , which is commensurate with the idea that macrophages may be an
important source of virus after T-cell depletion. The populations of uninfected target
cells T1 and T2 may have different source rates ¸i and natural death rates di.
Free virus particles are produced by both types of infected cells, which we assume pro-
duce virus at the same rate (again this could be readily generalized to account for
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(i) empirical observations, experiments, and data collection;

(ii) formalization of properties, relationships and mechanisms that

result in a biological or physical model (e.g., stoichiometric

relations detailing pathways, mechanisms, biochemical reactions,

etc., in a metabolic pathway model; stress-strain, pressure-force

relationships in mechanics and fluids);

(iii) abstraction or mathematization resulting in a mathematical

model (e.g., algebraic and/or differential equations with

constraints and initial and/or boundary conditions);

(iv) formalization of uncertainty/variability in model and data

resulting in a statistical model (this usually involves basic

assumptions about errors in modeling, observation

process/measurement, etc.);

3



(v) model analysis that can consist of simulation studies, analytical

and qualitative analysis including stability analysis, and use of

mathematical techniques such as perturbation studies, parameter

estimation (inverse problems) data fitting, statistical analysis;

(vi) interpretation and comparison (with the real system) of the

conclusions, predictions and conjectures obtained from step (v);

(vii) changes in “understanding” of mechanisms, pathways, etc., in the

real system.
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Formalization of properties,
relationships and mechanisms
which result in a biological or
physical model 

(ii)

The Iterative Modeling Process

Empirical Observations
(experiments and data collection)

(i)

Abstraction or Mathematization
resulting in a mathematical model 

(iii)

Formalization of
Uncertainty/Variablity in model and
data resulting in a statistical model

(iv)

Model Analysis
(v)

Interpretation and Comparison
(with the real system)

(vi)Changes in understanding of
mechanisms, etc., in the real
system.

(vii)

Formation Stage: (i),(ii),(iii),(iv)  Solution Stage: (v)    Interpretation Stage: (vi), (vii)
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Let us turn next to the reasons frequently given for
modeling. Perhaps the one most often offered is

simplification: the use of models makes possible the

investigation of very complex systems in a systematic manner. A

second rationale is ease in manipulation: investigations

involving separation of subunits and hypothesis testing may often be

facilitated through use of simulations in place of experimentation.

The suggestive features in modeling can also help in

formulation of hypotheses and in the design of
critical experiments. The modeling process also requires

preciseness in investigation in that one must move from a

general, verbal explanation of phenomena
to a specific, quantitative one.

But a rationale perhaps more fundamental than any of these is that

modeling leads to an organization of inquiry in that it tends

6



to polarize one’s thinking and aid in posing
basic questions concerning what one does and does not

know for certain about the real system. Whatever the reasons that

have been advanced to justify modeling attempts, it is sufficient

perhaps to note that the primary goal must be enlightenment, that

is, to gain a better understanding of the
real system, and the success or lack thereof of any modeling

attempt must be appraised with this in mind.

7



One must recognize the various levels or multi-scale
aspects of modeling in any attempt to compare or assess the validity

of several models for a phenomenon. For example, consider the

phenomena involved in the transmission of a nerve impulse along an

axon: this process is likely to be described by the mathematician or

biophysicist in terms of partial differential equations, wave

phenomena, or transmission line analogies, whereas a

neurophysiologist might speak in terms of local circuit analogies and

changes in conductances. The cell physiologist might describe the

phenomena in the context of transport properties of membranes and

ion flow, while the molecular biochemist could insist that the real

story lay in the theory of molecular binding.
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The choice of the level (micro vs. macro) at which one models

depends very much upon the training and background of the

investigator. Furthermore, the perception of whether a model is a

“good” one or not is also greatly influenced by this factor, and it is

therefore not surprising that all of the approaches to the nerve

impulse phenomena mentioned above (or indeed those for modeling

any physical or biological phenomena) can be subjected to valid

criticisms in any attempt to evaluate them.
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10 HIV Models

The slides for this lecture are located here: http://courses.ncsu.edu/ma493/lec/003/HIV-Jan06-Cellular%
20Level.pdf
These slides discuss the basis for the HIV system.

The mathematical model is a vector system

ẋ(t) = g(t, x(t), θ), x(0) = x0, x ∈ Rn, θ ∈ Rp

To start treating the data, you have to have a statistical model

Y (t) = Cx(t, θ) + εj

where C is the observation operation and εj is the error measurement on the jth data point.

10.1 Cellular Level

Figure 6: Overview of cellular model for HIV

This model has a probability distribution delay to account for variability across cells.

dV

dt
= −cV (t) + n1

∫ ∞
0

A(t− τ)k(τ)dτ + ncC(t)− nvtV (t)T (t)

where τ is production delay. (The rest of the variables still need to be defined...)
The system of equations describing this model is as follows: Note that the data that you get is the
following ydi ≈ (T +A+ C)(ti) + εi. Thus the observation is

y =
[
0 1 1 1

]
X

where X =
[
V T A C

]′
.

Thus
Y (t) = CX(t) + ε(t)
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10.2 Population Level

11 Probability Review

Recall that
Yi(t) = x(ti, θ) + εi

really just means
“data” = “model” + “error”

Notes for this lecture taken from http://courses.ncsu.edu/ma493/lec/003/Lipari_Prob_Review.
pdf

• Sample Space

• Events

• Random Variables (slide 9)

• pdf and cdf (slide 10)

• Expected Value of a RV (slide 13)

• Variance (slide 14)

• Distributions (slide 21)

– Uniform distribution

– Normal distribution

– Student’s t distribution (slide 37)

• Correlation (slide 15) and independence (slide 17)
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15 HIV Models

Many models (elementary) in the early literature-early models were not predictive–
EXAMPLE:
The Nowak-May model is given by

dT

dt
= s1 − d1T − k1TV (42)

dTi

dt
= k1TV − d2T

∗ (43)

dV

dt
= k9T

∗ − d7V (44)

where T is the number of healthy T-cells at time t, T ∗ is the number of infected T-cells
and V is the number of virus.

16 Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that infects T-helper cells of the
immune system and is the causative agent for Acquired Immune Deficiency Syndrome
(AIDS). HIV and AIDS are among the world’s most serious public health concerns,
affecting people of all demographics worldwide, with some regions impacted dispro-
portionately. As of 2003, an estimated 38 million HIV-infected individuals are living
worldwide, with approximately two-thirds in Africa, where 2.2 million people died from
opportunistic infections related to AIDS in 2003 (UNAIDS 2004 Report on the Global
HIV/AIDS Epidemic [31]). Despite many successful public health and clinical interven-
tions since the first identification of HIV-positive patients in 1981, there remains no cure
and the HIV/AIDS epidemic continues to grow.
Highly Active Antiretroviral Therapy (HAART), most commonly administered in the
form of drug cocktails consisting of a protease inhibitor and at least one or more reverse
transcriptase inhibitors, has been highly successful in suppressing HIV in many patients
and therefore improving quality of life. However, contrary to dangerous popular myths,
these drugs do not constitute a cure. While antiretroviral drugs are widely available in
the United States and Western Europe, their cost and side effects may make their use
challenging. In developing nations, UNAIDS estimates that only 7% of the infected pop-
ulation has access to HAART. Access to treatment for and education about this disease
remain serious human rights issues around the world. Improved strategies are needed
for efficient and appropriate use of drug therapy in both developed and underdeveloped
countries.
Studies of the epidemiology of HIV and public health issues such as transmission (inter-
host dynamics) are important. Equally important to investigate are the effective use
and improvement of antiretroviral drugs, which depend on understanding viral behavior
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18 HIV Model and Inverse Problem Techniques

18.1 Model description

Many HIV models have been considered in the literature, including those surveyed in
[35] and [48]. To demonstrate the potential predictive ability of such mathematical
models, we employ the model developed in [26], subsequently modified in [29], and
depicted in Figure 17; other models could be readily treated in our framework. The
model compartments are denoted by variables T1 (type 1 target cells, e.g., CD4+ T-cells,
cells/¹l), T2 (type 2 target cells, e.g., macrophages, cells/¹l), VI (infectious free virus,
RNA copies/ml), VNI (non-infectious free virus, RNA copies/ml), and E (cytotoxic T-
lymphocytes, cells/¹l). A superscript asterisk (∗) denotes infected cells. The available
clinical data include total CD4+ T-cell count, represented by the sum T1+T ∗

1 , and total
free virus, VI + VNI .
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λ1 T1
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λ2 T2
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1

2

immune effectors
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δ

infectious
virus

infected non−infectious
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c c

Figure 17: Schematic of compartmental HIV infection dynamics model. Only key path-
ways are indicated in the schematic – for further details, see the system of differential
equations (45) below.

While the remaining compartments T2, T
∗
2 , and E were not observed in the data used

in this paper, they are important for modeling and predicting long-term longitudinal
data. The presence of a secondary target cell population T2 helps to satisfy a model-
ing requirement suggested by Callaway and Perelson [35] in their 2002 review paper: a
reasonable model of HIV infection predicts a non-zero steady-state viral load, even in
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CTLs. The adapted system of ODEs is given by

Ṫ1 = ¸1 − d1T1 − (1− ²̄1(t)) k1VIT1 (45a)

Ṫ2 = ¸2 − d2T2 − (1− f ²̄1(t))k2VIT2 (45b)

Ṫ ∗
1 = (1− ²̄1(t))k1VIT1 − ±T ∗

1 −m1ET ∗
1 (45c)

Ṫ ∗
2 = (1− f ²̄1(t))k2VIT2 − ±T ∗

2 −m2ET ∗
2 (45d)

V̇I = (1− ²̄2(t))10
3NT±(T

∗
1 + T ∗

2 )− cVI (45e)

− (1− ²̄1(t))10
3k1T1VI − (1− f ²̄1(t))10

3k2T2VI

V̇NI = ²̄2(t)10
3NT±(T

∗
1 + T ∗

2 )− cVNI (45f)

Ė = ¸E +
bE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kb
E − dE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kd
E − ±EE,

(45g)

together with an initial condition vector

(T1(0), T
∗
1 (0), T2(0), T

∗
2 (0), VI(0), VNI(0), E(0))T .

Here the factors 103 are introduced to convert between microliter and milliliter scales,
preserving the units from some of the published papers.
As is common in models of HIV infection, infected cells T ∗

i result from encounters be-
tween uninfected target cells Ti and infectious free virus VI in a well-mixed environment.
As noted above, this model involves two co-circulating populations of target cells, per-
haps representing CD4+ T-lymphocytes (T1) and macrophages (T2). The natural infec-
tion rate ki may differ between the two populations, which could account for suspected
differences in activation rates between lymphocytes and macrophages. The treatment
factor ²̄1(t), described further below, represents a reverse transcriptase inhibitor (RTI)
that blocks new infections and is potentially more effective in population 1 (T1, T

∗
1 )

than in population 2 (T2, T
∗
2 ), where the efficacy is f ²̄1, with f ∈ [0, 1]. The differences

in infection rates and treatment efficacy help create a low, but non-zero, infected cell
steady state for T ∗

2 , which is commensurate with the idea that macrophages may be an
important source of virus after T-cell depletion. The populations of uninfected target
cells T1 and T2 may have different source rates ¸i and natural death rates di.
Free virus particles are produced by both types of infected cells, which we assume pro-
duce virus at the same rate (again this could be readily generalized to account for

52



Common difficulties and limitations:

(a) Availability and accuracy of data;

(b) Analysis of the mathematical model;

(c) Use of local representations that are

invalid for the overall system;

(d) Obsession with the solution stage;

(e) Assumption that the “model” is the

real system;

(f) Communication in interdisciplinary
efforts.
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Finally, we turn to the question of how one appraises a specific

modeling attempt. There are a number of criteria that one might

use. Among those proposed by various authors are the suggestions

that a good model should:

• fit data accurately;

• be theoretically consistent with the real system;

• have parameters with physical meaning that can be measured

independently of each other;

• prove useful in prediction;

• not so much explain or predict, but organize and economize

thinking;

• pose new empirical questions and help answer them through the

iterative process;

11



• help us understand the phenomena it represents and think

comfortably about them;

• point to inadequacies in some way of available data.

It is clear, though, that for a modeling investigation to be deemed a

success, it must have enhanced our overall
knowledge and understanding of the
phenomena in question. As one of our students

(having been attacked by other students for some rather unorthodox

and, at the time, unsupported hypothesis about mechanisms) noted

in defending his efforts, “We learn little indeed if the models we build

never stretch our understanding, but only tell us what we already feel

is safely known.” We remind the reader of the often quoted truth “all

models are incorrect, but some are more useful than others”.
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MODELS USUALLY BASED ON
CONSERVATION LAWS

• Force and Momentum Balance
(mechanics, physical models)

• Mass Balance (biological, chemical)

• Energy Balance (thermal)

13



Data Frag. Model Comp. Model Stat. Model Next Steps

CFSE Data Set
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Data Frag. Model Comp. Model Stat. Model Next Steps

Data Overview

(A. Meyerhans)

H.T. Banks CFSE Modeling



Data Frag. Model Comp. Model Stat. Model Next Steps

CFSE Labeling (Lyons and Parish, 1994)

Cells cultured with CFDA-SE (carboxyfluorescein diacetate
succinimidyl ester) then washed

CFDA-SE becomes protein-bound and fluorescent CFSE
(the fluorescent dye carboxyfluorescein succinimidyl ester)

Dye split between daughter cells at division

Dye naturally turns over/degrades (very slowly)

Fluorescence Intensity (FI) of CFSE measured via flow
cytometry

FI linear with dye concentration ⇒ FI ∝ mass

Several advantages over other dyes/techniques

H.T. Banks CFSE Modeling



Data Frag. Model Comp. Model Stat. Model Next Steps

CFSE Labeling (Lyons and Parish, 1994)

(C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biol. 77

(1999), 499–508.)

H.T. Banks CFSE Modeling



Data Frag. Model Comp. Model Stat. Model Next Steps

CFSE Data Set
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Data Frag. Model Comp. Model Stat. Model Next Steps

Label-Structured Model (cont’d)

This model must account for (Luzyanina et al., 2007):

Slow decay of CFSE FI over time

Dilution of CFSE as cells divide

Asynchronous division times
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Data Frag. Model Comp. Model Stat. Model Next Steps

Goals of Modeling

Cellular ‘Dynamic Responsiveness’
Link cell counts with proliferation/death rates

Population doubling time
Cell viability
Biological descriptors (cell cycle time, etc.)

Uncertainty Quantification...
... in the experimental procedure
... for estimated rates/etc

Analyze cell differentiation and division-linked changes

Investigate immunospecific extracellular signaling
pathways

Comparison among donors/cell types/disease progression

H.T. Banks CFSE Modeling



Data Frag. Model Comp. Model Stat. Model Next Steps

Initial PDE Model

Structured density n(t , x) (cells/UI)

(Exponential) Proliferation rate α(x)

(Exponential) Death rate β(x)

∂n
∂t

(t , x) +
∂[v(x)n(t , x)]

∂x
=

−(α(x) + β(x))n(t , x) + χ[xmin,xmax/γ]2γα(γx)n(t , x)

Assume exponential loss for natural decay of label,
v(x) = dx

dt = −cx

Assume even partitioning of CFSE upon division
γ ≡ mother-to-daughter CFSE ratio

H.T. Banks CFSE Modeling



Data Frag. Model Comp. Model Stat. Model Next Steps

‘Biphasic Decay’
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Data Frag. Model Comp. Model Stat. Model Next Steps

CFSE Labeling (Lyons and Parish, 1994)

(C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biol. 77

(1999), 499–508.)

H.T. Banks CFSE Modeling



Given the random variable Y d
j of observations, the ordinary least squares technique can be used as an esti-

mator for ~θ0 by minimizing

J(~θ) =

n
∑

j=1

|Y d
j − f(tj , ~θ)|

2 (12)

where f(tj , ~θ) is the model solution at time tj with parameter ~θ =
(

k1, k2, · · · , kn
)

. Thus, we have an estimator,
~θOLS , which we are using in hopes of finding an accurate estimate to fit to our data.

~θOLS = argmin

n
∑

j=1

|Y d
j − f(tj , ~θ)|

2 (13)

The data set shown in Figure 1, {yj}
n
j=1, is then assumed to be a realization of the random variable (11). We can

implement OLS in (13) to find an estimate, θ̂OLS , which best fits our mathematical model to this data set, i.e.,

θ̂OLS = argmin
n
∑

j=1

|yj − f(tj, ~θ)|
2. (14)

4.2 Biological Model 1

Due in part to the presence of two acetate esters in its structure, CFDA-SE has a high lipophilicity which allows it
to passively diffuse across cell membranes [19], suggesting that both an inflow rate and an outflow rate should be
accounted for. However, the data set we are examining is the result of a particular procedure where, after initial
exposure to CFDA-SE, the cell culture was flushed with water, eliminating any excess label [21]. Thus, the only
source of CFDA-SE inflow would be re-entering CFDA-SE, which the data suggests is insignificant. Therefore,
we considered it reasonable to assume that there is no continuing flow of CFDA-SE into the cell, but rather that
all CFDA-SE is present inside the cell at the start of the procedure, as depicted in Figure 3.

Once inside the cell, CFDA-SE reacts with intracellular esterases, resulting in the formation of the highly
fluorescent carboxyfluorescein succinimidyl ester (CFSE). At this point, our knowledge of the reaction is limited.
Nonetheless, we know a great deal about the structure of the product, CFSE. The structure of CFSE lacks
the two acetate esters present in CFDA-SE [19, 21, 22]. This absence decreases the lipophilicity of CFSE and
renders it less membrane permeable. As before, this knowledge necessitates both inflow and outflow rates, but the
data suggests that the mass of re-entering CFSE is insignificant in comparison to the mass of CFSE leaving the
cell. Therefore, only the outflow of CFSE from the cell is assumed in our model. Additionally, the succinimidyl
ester present in the structure of CFDA-SE is also present in CFSE. This succinimidyl moiety of CFSE is highly
reactive with amino groups and can covalently couple 5-6-carboxyfluorescein (CF) to intracellular molecules [19].
Our knowledge of this reaction and its products is currently limited, but we are aware that two types of coupling
can occur, yielding two types of products. One type of coupling occurs when CF is bound to a type of intracellular
molecule, which we arbitrarily call R1-NH2 that results in the conjugate CF-R1 which is unstable and quickly
exits the cell or is degraded. The second type of coupling occurs when CF is bound to a type of long lived
intracellular molecule, which we arbitrarily call R2-NH2 that results in the conjugate CF-R2 that is stable and
essentially membrane impermeable, maintaining a fluorescent label [19]. A initial schematic of this process within
a cell is depicted in Figure 3 and is designated as Biological Model 1. A list of related state variables and kinetic
parameters for this model and the subsequent models used below are given in Table 2.

10



Parameter Description

k1 Rate of decay of CFDA-SE
k2 Rate of conversion of CFDA-SE to CFSE
v2 Vmax for Michaelis-Menten reaction between CFDA-SE and CFSE
K2 km for Michaelis-Menten reaction between CFDA-SE and CFSE
k3 Rate of decay of CFSE
k4 Rate of uniform conversion of CFSE to CF-R1 and CF-R2
f Fraction of CFSE that converts to CF-R1

k4,1 Rate of conversion of CFSE to CF-R1
v4,1 Vmax for Michaelis-Menten reaction between CFSE and CF-R1
K4,1 km for Michaeli-Menten reaction between CFSE and CF-R1
k4,2 Rate of conversion of CFSE to CF-R2
v4,2 Vmax for Michaelis-Menten reaction between CFSE and CF-R2
K4,2 km for Michaelis-Menten reaction between CFSE and CF-R2
k5 Rate of decay of CF-R1
k6 Rate of decay of CF-R2
k7 Rate of conversion of CFSE to general CF-R term
v7 Vmax for Michaelis-Menten reaction between CFSE and general CF-R term
K7 km for Michaelis-Menten reaction between CFSE and general CF-R term
k8 Rate of decay of general CF-R term
x0 Initial fluorescence
c Determines how much initial fluorescence CF-R1 & CF-R2 receive in Model 5.1
α Rate of decay in Model 6.2 and 6.3
K Carrying capacity (lower asymptote) for total fluorescence in Model 6.2 and 6.3

Component Description

x1 CFDA-SE
x2 CFSE
x3 CF-R1
x4 CF-R2
x5 general CF-R term (CF-R1 + CF-R2)

Table 2: List of variables used in the paper.

11



Figure 3: A schematic of Biological Model 1, representing the serial dilution process of the intracellular dye within
a cell.

4.2.1 Model 1.1: Exponential Decay

Based on the law of mass action, the following system of equations was created to model the conversion and decay
of CFDA-SE in a cell:

d~x

dt
=



























































dx1

dt
= −k1x1 − k2x1

dx2

dt
= k2x1 − k3x2 − k4x4

dx3

dt
= k4fx2 − k5x3

dx4

dt
= k4(1− f)x2 − k6x4.

(15)

A list of variables used and their meanings can be found in Table 2. Continuing to implement the modeling
process in [4], we were able to calculate the ~θ that produced the lowest J(~θ). This was evaluated by comparing
the data to our model, which is the solution ~x (the masses of CFDA-SE, CFSE, CF-R1, and CF-R2) multiplied
by the observation matrix (1 1 1 1). This first model, based on simple laws of mass action in the kinetics, is
plotted against the data versus time in Figure 4.
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4.3 Biological Model 2

In the first mathematical model, Model 1.1, the rates at which CF-R1 and CF-R2 are formed from CFSE were
assumed to be the same. However, based on our general knowledge of chemical reactions and energy diagrams,
we questioned the appropriateness of this assumption. Typically, the rate determining step of a reaction is the
step in which the most unstable state is being formed. Applying this notion to the conversion of CFSE, the
reaction forming the unstable conjugate would occur much more slowly than the reaction forming the stable
conjugate. Therefore, we concluded that the conversion of CFSE to CF-R1 and CF-R2 should be characterized
by two different rates instead of one rate in two different proportions.

Figure 5: A schematic of Biological Model 2, with independent reaction rates from CFSE to CF-R1 and CF-R2.

4.3.1 Model 2.1: Exponential Decay

To follow this new biological model, the f parameter was removed, and the reactions of CFSE to CF-R1 and
CF-R2 were treated as two completely independent reactions. This change resulted in the system of equations

d~x

dt
=



























































dx1

dt
= −k1x1 − k2x1

dx2

dt
= k2x1 − k3x2 − k4,1x2 − k4,2x2

dx3

dt
= k4,1x2 − k5x3

dx4

dt
= k4,2x2 − k6x4,

(16)

where k4,1 and k4,2 represent the rates of conversion to CF-R1 and CF-R2, respectively, as given in Table 2. The
plots for Model 2.1 versus the data set are presented in Figure 6.

4.3.2 Model 2.2: Michaelis-Menten Kinetics for the First Conversion

Exponential models, though simple to implement, represent models with possibly unbounded solutions, which one
does not see in typical biological systems. Thus, to more accurately estimate various conversion rates, we decided
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4.4 Biological Model 3

Upon further consideration, we generated the hypothesis that CFDA-SE is converted to CFSE through the
catalyzed hydrolysis of its acetyl esters by acetylesterase. It is generally accepted that intracellular esterases
are responsible for the conversion of CFDA-SE to CFSE [19, 22]. These esterases are hydrolase enzymes that
cleave the acetyl esters present in CFDA-SE into their parent carboxylic acid, acetate, and an alcohol [10]. The
particular esterase which specializes in removing acetyl groups is called acetylesterase [1].

Applying the mechanisms of hydrolysis to CFDA-SE produces the exact structure of CFSE that is described
in the literature and Section 4.2 above. Under basic conditions, a reaction known as saponification [10] takes
place (see Figure 9). First, the hydroxide, functioning as a nucleophile, attacks the electrophilic C found in the
double bond of the ester, breaking the π bond and forming a tetrahedral intermediate. This intermediate then
collapses to form a carboxylic acid when the alkoxide leaving group is kicked off and the π bond is re-formed. The
alkoxide that was previously lost then functions as a base, quickly deprotonating the carboxylic acid and forming
the final products: the parent carboxylic acid (acetate) and an alcohol.

Under acidic conditions, the reverse of Fischer esterification [10] takes place (see Figure 10). To begin with,
the ester must be activated since the nucleophile present is weak and the electrophile present is poor. To do this,
the oxygen of the carbonyl ester is protonated to make it more electrophilic. The molecule then encounters water,
which functions as a nucleophile, attacking the electrophilic C found in the double bond of the ester, breaking the
π bond and forming a tetrahedral intermediate. Another water molecule then deprotonates the oxygen that came
from the water molecule, neutralizing its charge. As with the base hydrolysis, the alkoxide needs to leave, but in
this case, it is not a good enough leaving group. Therefore, it must first be protonated. Following protonation,
the electrons from the adjacent oxygen help push it off, reforming the π bond and creating an alcohol. Yet
another water molecule then deprotonates the oxonium ion forming the final products: the parent carboxylic acid
(acetate), a regenerated acid catalyst (hydronium), and an alcohol (from the previous step). Such correlation
leads us to conclude that the catalyzed hydrolysis of its acetyl esters by acetylesterase (via either mechanism
above) is a reasonable explanation for the reactants and products observed in the biological process.

Figure 9: The above shows the mechanism by which the acetyl esters present in CFDA-SE are cleaved to form
CFSE under basic conditions. This base hydrolysis of esters is known as saponification [10].

This knowledge raised further questions about the importance of the diffusion of CFDA-SE out of the cell,
leading to the creation of a third biological model. Although we were comfortable with the assumption that
there is no significant inflow of CFDA-SE into cells, previous models showed an efficient transfer of CFDA-SE to
CFSE. This is consistent with the notion that catalyzed reactions occur quickly, so in the next model (denoted
as Biological Model 3 and depicted in Figure 11), all CFDA-SE was assumed to have already been converted to
CFSE at t = 0 without any CF-R1 or CF-R2 yet present. .
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Figure 10: The above shows the mechanism by which the acetyl esters present in CFDA-SE are cleaved to form
CFSE under acidic conditions. This acid catalyzed hydrolysis of esters is known to be the reverse of Fischer
esterification [10].

Figure 11: A schematic of Biological Model 3, assuming all CFDA-SE has already been converted to CFSE at
t = 0.
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4.4.1 Model 3.1: Exponential decay

Based on the assumption that CFDA-SE is immediately converted to CFSE, our original exponential system
was altered to only depend on five rate parameters instead of seven, yielding the system of equations (19). The
variables are defined in Table 2, and depicted in the schematic for Model 3 (Figure 11). Plots of the corresponding
fits-to-data are given in Figure 12.

d~x

dt
=












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























dx2

dt
= −k3x2 − k4,1x2 − k4,2x2

dx3

dt
= k4,1x2 − k5x3

dx4

dt
= k4,2x2 − k6x4.

(19)
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Figure 12: A plot of Model 3.1 and the first data set from Donor 1 using exponential decay is depicted in the top
figure, assuming all of the CFDA-SE is immediately converted to CFSE and little dye leaks out of the cell. The
individual components of the system are plotted in the bottom graph.
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4.4.2 Model 3.2: Michaelis-Menten Kinetics

We again consider Biological Model 3 but with Michaelis-Menten kinetics. After applying Michaelis-Menten
kinetics to all of the conversion rates and leaving the rates of decay as exponential rates, the system of differential
equations (20) was created. The resulting plots versus the data along with component compartments are given
in Figure 13.
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dt
=


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Figure 13: A plot of the Model 3.2 and the first data set from Donor 1, using Michaelis-Menten kinetics for the
conversion of CFSE to CF-R1 and CF-R2 is given in the top graph. The individual components are plotted in
the bottom graph.
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Figure 14: A schematic of Biological Model 4, in which the two CF-R1 and CF-R2 components combined as a
single component.

4.5 Biological Model 4

Encouraged by our success in simplifying our model from four to three components, we decided to test this
simplicity even further with several two-component systems. The first such system combines both of the CF-R1
and CF-R2 terms together as one single component. A schematic, depicted as Biological Model 4, for this model
is shown in Figure 14.

4.5.1 Model 4.1: Exponential Decay

In the first mathematical model for Biological Model 4, we assume an exponential conversion rate between each
term. This is given by the differential equation (21). The results of the inverse problem calculations for Model
4.1 is plotted against the third data set from Donor 1, and is given in Figure 15.

d~x

dt
=



















dx2

dt
= −k3x2 − k7x2

dx5

dt
= k7x2 − k8x5.

(21)

4.5.2 Model 4.2: Michaelis-Menten Kinetics

In this mathematical model, we assume a Michaelis-Menten conversion rate between CFSE and the general CF-R
term, composed of both CF-R1 and CF-R2. Although there is no real biological basis for using a Michaelis-Menten
reaction here since there is no enzyme involved in this step, it still provides a nice bounded solution model. The
differential equation system created by using Michaelis-Menten kinetics for the conversion rates and exponential
decay for the decay rates is given in (22). This model was fit to the third data set from Donor 1, with results
given in Figure 16.
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=
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(22)
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Figure 15: Top: Model 4.1 fit to the first data set from Donor 2; Bottom: the components of the system.
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Figure 16: Model 4.2 fit to the third data set from Donor 1 in the top graph, with the components of the system
depicted in the bottom graph.
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Figure 17: Schematic of Biological Model 5, which only accounts for the fluorescence given by CF-R1 and CF-R2.

4.6 Biological Model 5

We next considered a second two-component system, where we solely assume that fluorescence is composed of
the CF-R1 and CF-R2 terms, which are constantly decaying. This Biological Model 5 is depicted in Figure 17.

4.6.1 Model 5.1

There is only one mathematical equation for this model, and the differential equation can actually be solved
analytically very easily. Accordingly, the equation for the fluorescence is given by

x(t) = cx0e
−k5t + (1− c)x0e

−k6t (23)

where the c term, 0 ≤ c ≤ 1, allows both components to receive some of the initial fluorescence, denoted by x0.
A plot of this model fitted against the third data set from Donor 1 is given in Figure 18.
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Figure 18: Model 5.1 fit to the third data set from Donor 1 in the top graph, with the components plotted in the
bottom graph.

26



4.7 Biological Model 6

In order to further test simplification in our models, we decided to carry out the inverse problem for the data
sets using models with only one differential equation instead of an entire system. In our previous models, we
were able to plot each of the components of CFSE and make predictions about how the mass of each component
changes as the dye is converted from one form to another. The models in this section do not allow us to calculate
the mass of each component, but they do tell us the rate of change in the total fluorescence in the cell.

4.7.1 Model 6.1: Exponential Decay

Using the exponential decay model, we created the differential equation with only one rate parameter given by

dx

dt
= rx. (24)

Initial attempts at fitting the data with a fixed initial condition of the first data point resulted in exponential
curves that cut through the middle of the data. We found that adding an additional parameter for estimating
the initial condition allowed the exponential curve to fit the data much more smoothly, resulting in a smaller cost
function but still not a convincing fit-to-data. This fit can be seen in Figure 19 against two different data sets.
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Figure 19: Model 6.1 fit to the third data set from Donor 1 (top) and the third data set from Donor 2 (bottom),
using a once component exponential decay.

4.7.2 Model 6.2: Logistic Decay

Using the logistic decay model, we created a differential equation for decay with two parameters
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dx

dt
= αx(1 −

x

K
), (25)

where α is the decay rate and K is the carrying capacity of the population, as given in Table 2. A plot for Model
6.2 versus the data is given in Figure 20.
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Figure 20: Model 6.2 fit to the second data set from Donor 1 (top) and the third data set from Donor 2 (bottom),
using logistic decay and one component.

4.7.3 Model 6.3: Gompertz Decay

We next used the Gompertz model to describe fluorescence decay, which has the same two parameters as Model
6.2. A plot of Model 6.3 against the data is given in Figure 21 with the equation given by

dx

dt
= αx log

K

x
. (26)
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Figure 21: Model 6.3 fit to the third data set from Donor 1 (top) and the third data set from Donor 2 (bottom),
using the Gompertz rate and one component.
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