A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

Erica M. Rutter, Tracy L. Stepien, Barrett A. Anderies, Eric J. Kostelich, Yang Kuang

January 7, 2016

E. M. Rutter, et. al A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

1 Introduction

- 2 Experimental Work
- 3 Mathematical Model
- 4 Results for Representative Mouse

(E)

Introduction: Mathematical Oncology and Glioblastoma

- Cancer is a major health problem today, with an estimated 1.66 million new cancer cases and over 580,000 projected cancer deaths in the USA in 2015
- Mathematical models can be a helpful tool in understanding all stages of the disease, from growth to treatment
- Glioblastoma Multiforme (GBM) is a deadly primary brain tumor
- GBM is characterized by both high proliferation and diffusivity
- ullet With treatment, mean survival from detection is < 15 months
- Symptoms include
 - hemorrhaging
 - nausea
 - vomiting
 - headaches
 - memory loss
 - seizures

Sagittal cross-section of human brain with GBM \sidesimes

2 Experimental Work

3 Mathematical Model

Image: Image:

Introduction: In vivo Experimental Data

- 5 immune-competent mice were cranially injected with GL261 cell line
- Mice imaged using MR 5 times (day 11, 15, 18, 22, 25)
- Mice euthanized and brains harvesed for histology on day 26

MR images from day 25 for the second mouse in cohort 3 from the same location in the brain. On the left is the T2-weighted image, on the right T1-weighted post contrast image. The tumor is visible in both images.

Creation of Computational Domain

- $\bullet\ {\rm Mimics}^{(\!{\rm R}\!)}$ uses thresholding to generate rough segmentation of brain
- Edges smoothed by hand to ensure a computationally-friendly domain
- Each mouse is registered to their third time point using GeoMagic[®] to ensure computational domain remains consistent throughout simulation
- MATLAB[®] is used to apply the affine matrix from GeoMagic[®] to register all brains to their third time point geometry
- Uniform matrix saved with brain geometries

Introduction

(E)

Mathematical Equation

$$\frac{\partial u}{\partial t}(\mathbf{x},t) = \underbrace{D\nabla^2 u(\mathbf{x},t)}_{\text{diffusion}} + \underbrace{\rho u(\mathbf{x},t) \left(1 - u(\mathbf{x},t)\right)}_{\text{growth}}, \qquad \mathbf{x} \in \Omega$$
$$u(\mathbf{x},t) = 0, \qquad \mathbf{x} \in \partial\Omega$$
$$u(\mathbf{x},0) = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega$$

Where Ω is brain geometry with ventricles segmented out, $\partial \Omega$ is the boundary of the brain and ventricles, and f(x) depends on the initial condition choice

- D represents diffusion coefficient
- ρ represents intrinsic growth rate of GL261

- 3D finite difference model
- Spatial discretization is centered finite difference
- ode45 used to step through time
- Code written as a MCTP project by Barrett Anderies
- To optimize the parameters, we examine the error function based on the Jaccard Distance

$$\mathsf{error} = rac{1}{n} \sum_{k=1}^n \left(1 - rac{\mathsf{data} \cap \mathsf{simulation}}{\mathsf{data} \cup \mathsf{simulation}}
ight)$$

where n represent the time points we have data for

Jaccard Distance

sets

The error function is based on the Jaccard distance:

error
$$= \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{\text{data} \cap \text{simulation}}{\text{data} \cup \text{simulation}} \right)$$

E. M. Rutter, et. al A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

Biological and Mathematical Questions

- Biological Question: Why such large variance in final tumor size between mice?
 - Hypothesis 1 (H1): Natural variations in D and ρ account for the change
 - Pypothesis 2 (H2): Morphological chages occur, meaning D and ρ should not be constant.
 - Output Short-term solutions changing D and ρ.

Total visible volume for each mouse at each time point

- Mathematical Questions
 - Can we use a simple model to test the above biological hypotheses?
 - Can we optimize to find biologically relevant parameters?

We need methods to test our hypotheses

- O Hypothesis 1: We simply optimize D and ρ over all times points for each mouse, using the Jaccard index at each time point.
- Hypothesis 2: We optimize from previous optimized time point, i.e. we must optimize day 11 to day 14 first, then use the optimal simulated tumor to initialize day 14 to day 18.
- Hypothesis 3: We optimize from MR-generated time point. At each new optimization, we use the MR image as initialization. i.e. for day 14 to day 18, we use MR image from day 14 as initialization

通 と イ ヨ と イ ヨ と

Introduction

- 2 Experimental Work
- 3 Mathematical Model

< ∃ >

-

H1: Natural Variance in D and ρ

Error=0.4524, Overlap 70%

H2: Varying *D* and ρ from time step to time step

Error=0.4365, Overlap 72%

E. M. Rutter, et. al A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

H3: D, ρ non-constant, short term simulations

Error: 0.3673, Overlap 77 %

E. M. Rutter, et. al A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

Remaining Information

Hypothesis	Time Point	$D (\mu m^2/h)$	$\rho (h^{-1})$	error
1	-	413.77	0.0188	0.4524
2	2	139.24	0.0182	0.1196
	3	839.93	0.0248	0.1191
	4	1047.6	0.0192	0.1029
	5	968.75	0.0082	0.0949
3	2	139.24	0.0182	0.1196
	3	233.97	0.0499	0.1145
	4	1156.2	0.0178	0.0688
	5	1305.6	0.0105	0.0644

Hypothesis	Time Point	$D (\mu m^2/h)$	$\rho (h^{-1})$	error
1	-	651.17	0.0177	0.2833
2	4	859.70	0.0127	0.1408
	5	454.29	0.0236	0.1364
3	4	859.704	0.0127	0.1408
	5	1552.1	0.0200	0.1027

Estimated wave speeds for various tumor volumes. Red represents hypothesis 3, blue is hypothesis 2. Different markers used for each mouse.

Conclusions and Further Directions

- Conclusions
 - Generated uniform grid from actual MR images
 - Used 3D finite difference code to fit simulated tumor to actual tumor
 - Tested hypotheses as to why the final tumor sizes are so different
 - Discovered short-term fits were much more accurate
- Further Directions
 - Incorporating more complexity into the model to achieve a better fit
 - Use more realistic diffusion (Diffusion Tensor Imaging)
 - Use histology to quantify relationship between visible tumor on MR image and carrying capacity/tumor density
 - Incorporate more realistic brain structure mass effect via finite element method

Thanks

Special thanks must be given to

- From the SOMMS Dept:
 - Dr. Yang Kuang
 - Dr. Eric Kostelich
 - Dr. Tracy Stepien
 - Barrett Anderies
- From IPA Lab:
 - Dr. David Frakes
 - Jon Plasencia
- From Barrow Neurological Institute
 - Dr. Mark Preul
 - Dr. Adrienne Scheck
 - Dr. Eric Woolf