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Abstract

Glioblastoma multiforme is an extremely fatal ag-
gressive brain cancer, characterized by both in-
tense proliferation and excessive migration, con-
tributing to the difficulty of treatment. We com-
pare and contrast a single density-dependent
diffusion equation to model the behavior of both
proliferation and migration with a two-population
model for proliferative and migratory cells. We
begin analysis of the models to determine ex-
istence of traveling wave solutions. Both mod-
els are compared with well-known in vitro exper-
imental data.

Background

Stein et. al [1] performed experiments to track
in vitro glioblastoma sphere growth
Stepien et. al l [2] created density dependent
diffusion model, matching experimental data
better than Stein et al’s two-equation model
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Figure : Radii of the proliferating (black) and migratory
(red) cells for the experiment from Stein et al.l [1] on days
0, 1, 3, and 7. Domain is 3 mm by 3 mm.

Experimental Data

5 immune-competent mice injected with
GL261 cell line
MR acquisitions 5 times and euthanized on
day 26 (T2w, T1w post, DWI)
Brains harvested to be stained for histology

Figure : MR images from day 25 for the second mouse in
cohort 3 from the same location in the brain. On the left is
the T2-weighted image, on the right T1-weighted post
contrast image. The tumor is visible in both images.

Model Equations

Stepien et. al [2] density-dependent diffusion equation
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D1, D2, g, vi, umax, a, n > 0, D1 > D2

T = total number of cancerous cells (T = M+
P )
As cell density increases, diffusion constant
decreases
Low cell-density areas increase diffusion to
simulate single-cell migration 0 1 2 3 4
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Figure : Density-dependent diffusion function, D(T )

2 Equation Model
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P represents population of proliferating cells
M represents population of migrating cells

Simulation Results

Use fminsearch to minimize error function
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with N +M the total number of data points (21), and q the number of free parameters (6)
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Figure : Numerical solution of the density-dependent diffusion glioblastoma model (1) the two equation model (2)
optimized using error function (3) compared to experimental data from Stein et al. [1] and their simulations.

Model (1), has 1/2 error for Stein et al, the two equation model (2) has error approximately on the order
of Stein et al

Traveling Wave Solutions

Model 1
Traveling wave solution of Model 1 exists if
and only if k � kmin = 2

p
D1g + v is satisfied.

With optimized parameters, theoretical kmin =
0.003345 cm/day, but simulations k = 0.02255 cm/day
Why the discrepancy?
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Figure : The observed simulated wave speed when
varying parameter D2. kmin is the red dashed line.

Model 2
Traditional wave speed analysis gives kmin =

q
rg

2
D1

g+µ

Observe many differing wave speed front shapes
varying ✏:

Figure : Varying parameters gives many different
shapes of wave fronts, showing analysis not enough

Conclusions and Further Directions

Compared single density-dependent diffu-
sion model for glioblastoma multiform tumor
growth with two-equation model using in vitro

experimental data
Future work includes applying both models to
in vivo data
Determine discrepancy between simulated
and theoretical wave speeds for Model 1
Determine analytical expression for theoreti-
cal wave speed for Model 2
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