Introduction and Biological Background

- Daphnia magna is a species of water flea widely studied in ecotoxicology
■ Used to assess hazards of chemicals such as pesticides on ecosystems
■ Currently, ecological risk assessments are performed at the organismal level
■ Mathematical models are needed to propagate organismal assessment information to population level to enable the causal association of organismal responses to ecosystems adversity (Anchor 2)

■ Biological Questions

- How do we use individual-level data to inform our population-level predictions?
- Can we mathematically simulate populations of Daphnia magna for over 100 days?
■ Mathematical Questions
- Does our model fit the data well?
- Do the parameters we find have small confidence intervals and biological meaning?

Data Collection

Individual Level

■ 30 individual daphnids are housed in 50 mL beakers with 40 mL of daphnia media
■ Daphnids are kept under laboratory conditions (see population level for details)
■ Daily, the following were measured:

- Major axis length, minor axis length (see right)
- Fecundity (amount of neonates produced)
- Survivability (how many were still alive)
 (C). These represent density independent functions for growth, fecundity, and death.

Data Collection

Population Level

■ 2 1-liter beakers are seeded with five 6-day old female daphnids
■ Daphnids are kept under laboratory conditions (20 C, 8-16 hour light/dark cycle, media changes daily, 4 mL of 7×10^{7} cells $/ \mathrm{mL}$ algae, Pseudokirchneriella subcapita, and 2 mL Tetrafin fish food, fed daily)
■ Daphnid populations counted every M/W/F for the first 3 weeks, weekly thereafter
■ Daphnids separated by $1.62-\mathrm{mm}$ pore net into size class 1 (less than 1.62 mm) and size class 2 (greater than 1.62 mm)

Mathematical Model

■ We use the Sinko-Streifer equations that describe continuous-time dynamics of a population structured over the variable age, a
■ $u(t, a)$ represents the population of daphnids at time t of age a.
The equation describing daphnid population dynamics is given by:

$$
\underbrace{\frac{\partial u(t, a)}{\partial t}+\frac{\partial u(t, a)}{\partial a}}_{\text {population change of daphnids }}=-\underbrace{\mu_{i n d}(a)}_{\begin{array}{c}
\text { density-independent } \\
\text { death rate only } \\
\text { depends on age, } a \\
\text { (see figure C bottom left) }
\end{array}} \times \underbrace{\mu_{d e p}(a, M(t))}_{\begin{array}{c}
\text { density-dependent } \\
\text { death rate depends } \\
\text { on age and total } \\
\text { biomass, } M(t)
\end{array}}
$$

The equation governing the introduction of neonates into the population:

Where total population biomass, $M(t)$ is given by :

■ We estimate 2 parameters by fitting our model to the data

- q - as shown in the above figure this is responsible for the steepness of the response of density-dependent fecundity
- c_{1} - this represents the linear relationship (steepness) between biomass and densitydependent death

Results

The resulting best fit for our model for replicate 1 (left) and replicate 2 (right). We see the size class one (top, less than 1.62 mm), size class 2 (middle, greater than 1.62 mm) and total population (size class $1+$ size class 2)

Parameter Estimate (Rep1)	95% Cl (Rep1)	SE (Rep1)	
q	156.8398	$(106.7968,206.8827)$	25.6630
c_{1}	0.0185	$(0.0168,0.0202)$	$8.6934 \mathrm{e}-4$
Parameter	Estimate (Rep2)	95% Cl	Rep2)
q	245.0448	$(108.8946,381.1950)$	SE (Rep2)
c_{1}	0.0243	$(0.0223,0.0263)$	0.0010

Table: Optimal parameters, confidence intervals, and standard errors for replicates 1 and 2.

Conclusions and Further Directions

Conclusions

■ Able to build a realistic population model for Daphnia magna and fit to data.
■ Used individual-level data to inform population-level microcosm mathematical model.
■ Standard errors are small and some parameters are included in the other replicates confidence interval

Further Directions

■ Determine why our model underestimates the population peak.
■ Test population-level responses to various chemicals/pesticides using previously published individuallevel data
■ Develop more efficient methods of counting populations
■ Use mathematics to optimally design experiments in order to lower standard errors

