## NC STATE UNIVERSITY

# Mathematically Modeling Populations of Daphnia magna Erica M. Rutter, H. T. Banks, G. Leblanc, and K. B. Flores

### **Data Collection** Introduction and Biological Background **Population Level** Daphnia magna is a species of water flea widely studied ■ 21-liter beakers are seeded with five 6-day old female daphnids in ecotoxicology Daphnids are kept under laboratory conditions (20 C, 8-16 hour light/dark Used to assess hazards of chemicals such as pesticides cycle, media changes daily, 4 mL of $7 \times 10^7$ cells/mL algae, *Pseudokirch*on ecosystems neriella subcapita, and 2mL Tetrafin fish food, fed daily) Currently, ecological risk assessments are performed at Daphnid populations counted every M/W/F for the first 3 weeks, weekly the organismal level thereafter Mathematical models are needed to propagate organ-Daphnids separated by 1.62-mm pore net into size class 1 (less than 1.62 mm) and ismal assessment information to population level to ensize class 2 (greater than 1.62mm) able the causal association of organismal responses to **Mathematical Model** ecosystems adversity (Anchor 2) We use the Sinko-Streifer equations that describe continuous-time dynam-**Adverse Outcome Pathway** ics of a population structured over the variable age, a $\blacksquare$ u(t, a) represents the population of daphnids at time t of age a. esponses Lethality Chemical **DNA Binding** Properties The equation describing daphnid population dynamics is given by: Altered Tissue Development or Function Altered Signaling Cancer Protein Depletion $\partial u(t,a)$ $\partial u(t,a)$ **Foxicity Pathway** $\mu_{ind}(a)$ adverse outcome at the rganism- or population-level (initiating event) density-independent population change of daphnids death rate only Biological Questions depends on age, a (see figure C bottom left) How do we use individual-level data to inform our population-level predictions? The equation governing the introduction of neonates into the population: Can we mathematically simulate populations of Daphnia magna for over 100 days? \_ $\kappa_{ind}(s)$ Mathematical Questions neonates being density-independent Does our model fit the data well? born at time t fecundity rate Do the parameters we find have small confidence intervals and depends on age (see figure B bottom left) biological meaning? Where total population biomass, M(t) is given by : **Data Collection** Х u(t,s)Individual Level Total daphnid biomass current ■ 30 individual daphnids are housed in 50 population size at time t mL beakers with 40 mL of daphnia media Daphnids are kept under laboratory conditions (see population level for details) Daily, the following were measured: Major axis length, minor axis length (see right) Example of daphnid with Fecundity (amount of neonates produced) major/minor axis measured. Neonates visible. Survivability (how many were still alive) 4000 2000 Biomass (d We estimate 2 parameters by fitting our model to the data $\blacksquare$ q - as shown in the above figure this is responsible for the steepness of the response of density-dependent fecundity Age (days) Age (days) Age (Days) Individual-level data collections for growth (A), fecundity (B), and survival $\bullet$ c<sub>1</sub> - this represents the linear relationship (steepness) between biomass and density-(C). These represent density *independent* functions for growth, fecundity, dependent death and death.











Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University



## Results



The resulting best fit for our model for replicate 1 (left) and replicate 2 (right). We see the size class one (top, less than 1.62 mm), size class 2 (middle, greater than 1.62 mm) and total population (size class 1 + size class 2)



replicates 1 and 2.

## **Conclusions and Further Directions**

Conclusions

- magna and fit to data.

- Further Directions
- peak.
- level data





Table: Optimal parameters, confidence intervals, and standard errors for

Able to build a realistic population model for Daphnia

Used individual-level data to inform population-level microcosm mathematical model.

Standard errors are small and some parameters are included in the other replicates confidence interval

Determine why our model underestimates the population

Test population-level responses to various chemicals/pesticides using previously published individual-

Develop more efficient methods of counting populations Use mathematics to optimally design experiments in order to lower standard errors