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Introduction: Prostate Cancer Statistics

In the US, prostate cancer is the most common non-skin
cancer in men and the second most fatal
The estimated probability of developing prostate cancer for
men in a lifetime is 1 in 6

NCI www.cancer.gov Cancer Statistics, 2015
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Androgen Suppression Therapy

Androgen suppression therapy decreases these androgens, either by
castration or the use of drugs
Primary response rate of about 80%-90%
Most advance to a castration-resistant prostate cancer (CRPC)
Side effects include:

Loss of libido

Erectile dysfunction

Loss of testicular mass
and penile length

Breast growth

Increased body fat

Loss of muscle mass

Osteoporosis

Anemia

Cognitive dysfunction

Depression

Fatigue

Hot flashes

Intermittent androgen suppression therapy (IAS) improves quality of
life, reduces side effects and therapy costs.
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Immune System Basics

Dendritic Cells (DC’s)
present antigens on surface
to (cytotoxic) T cells

T-cells attack tumor cells
with antigen on surface and
produce IL-2

IL-2 is a cytokine
(interleukin), promoting
differentiation of immature
T cells

Source: Gasteiger, Georg, and Wolfgang Kastenmuller.
”Foxp3+ regulatory T-cells and IL-2: the Moirai of T-cell
fates?.” Frontiers in immunology 3 (2012).[4]
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Dendritic cell vaccines

Source: Surmont, Veerle F., et al. ”Investigational approaches for
mesothelioma.” Frontiers in oncology 1 (2011). [11]

1 Blood is extracted from patient
and monocytes are differentiated
into DC

2 DCs loaded with tumor derived
antigens

proteins from autologous tumor
lysate
electroplated with tumor-derived
mRNA
if autologous tumor unavailable,
loaded

3 Activate DCs with cytokines

4 Tumor antigen-presenting DC is
reinjected into patient
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DC Vaccines

For prostate cancer, target antigen is Prostatic acid
phosphatase (PAP)

Sipuleucel-T (Provenge) currently only approved DC
treatment for prostate cancer

DC vaccines tend to be safe with mild limited side effects
(flu-like symptoms)

DC vaccine efficacy is mitigated by radiation and
chemotherapy

Used for advanced prostate cancer that is no longer helped by
hormone therapy (AI)

Current trials to examine DC vaccines for prostate cancer
which is not yet castration resistant
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Our Model

AD cells:
dX1

dt
= r1(A,X1,X2)X1︸ ︷︷ ︸

growth and death

− m1(A)X1︸ ︷︷ ︸
mutation to AI

+ m2(A)X2︸ ︷︷ ︸
mutation from AI

−X1 f1(X1,X2,T )︸ ︷︷ ︸
death by T cell

AI cells:
dX2

dt
= r2(X1,X2)︸ ︷︷ ︸

growth and death

+ m1(A)X1︸ ︷︷ ︸
mutation from AD

− m2(A)X2︸ ︷︷ ︸
mutation to AD

−X2 f2(X1,X2,T )︸ ︷︷ ︸
death by T cell

T cells:
dT

dt
=

e2D

g2 + D︸ ︷︷ ︸
activation of T cell by DC

− µT︸︷︷︸
death

+ f3(X1,X2,T )︸ ︷︷ ︸
activation of T cell by cytokines

IL-2 conc:
dIL

dt
= Tf4(X1,X2)︸ ︷︷ ︸

secretion

− ωIL︸︷︷︸
degradation

Androgen conc:
dA

dt
= γ(a0 − A)︸ ︷︷ ︸

homeostasis of androgen

− γa0u(t)︸ ︷︷ ︸
depletion of androgen if on therapy

DC cells:
dD

dt
= − cD︸︷︷︸

death
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Our Model - Cont’d

With growth and mutation functions:

r1(A,X1,X2) = r1A
(

1− X1+X2
K

)
− d1(a0 − A)

r2(X1,X2) = r2

(
1− X1+X2

K

)
m1(A) = m1(1− A

a0
)

m2(A) = m2( A
A+k4

)

Imposed conditions on fi (X1,X2,T ):

fi (X1,X2,T ) ≥ 0 ∀ X1,X2,T ≥ 0

f1(X1,X2, 0) = f2(X1,X2, 0) = f3(0,T ) = f4(0, 0) = 0
∂f1
∂X1
≤ 0, ∂f2∂X2

≤ 0, and ∂f1
∂T ≥ 0, ∂f2∂T ≥ 0.

∂f3
∂IL
≥ 0, ∂f4∂Xi

≥ 0
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Biological and Mathematical Questions

Major changes

Consider allowing AI cells to mutate back into AD cells when
in an androgen-rich environment

Lack of androgen actively kills AD cells and prevents growth

Little is known about immune system interactions, so use
generalized functions

Biological Questions

How does timing the DC vaccine dose effect time to AI cell
growth?

Can DC vaccines be effective in treating cancers which are not
AI?

Mathematical Questions

Can we determine optimal dosing quantities to stabilize or
eradicate the disease?

Can we determine mathematically the steady-state behavior
and translate that back into biological meaning?
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Our functions

The functions we propose for simulation results are

f1(X1,X2,T ) = e1T
g1+X1+X2

f2(X1,X2,T ) = e1T
g1+X1+X2

f3(X1,X2,T ) = e3TIL
g3+IL

f4(X1,X2) = e4(X1+X2)
g4+X1+X2

and they satisfy the previous conditions.
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Vaccine Timing Results

Keep total dosage of vaccine constant

Vary how often dendritic cell vaccine is administered

More frequent injections delay androgen independent relapse
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Minimal e1

e1 represents maximum rate T cells kill cancer cells, may be
personalized parameter

numerically investigate minimal e1 value to prevent relapse
(stable cyclical disease).

More frequent injections can assist weaker immune systems
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Continuous Model

Assume continual injection v (as through an IV drip)
dD
dt = v︸︷︷︸

injection

− cD︸︷︷︸
death
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Analysis of Continuous Model

dX1

dt
= r1(A,X1,X2)X1 −m1(A)X1 + m2(A)X2 − X1f1(X1,X2,T )

dX2

dt
= r2(X1,X2)X2 + m1(A)X1 −m2(A)X2 − X2f2(X1,X2,T )

dT

dt
=

e2D

g2 + D
− µT + Tf3(IL,T )

dIL
dt

= Tf4(X1,X2)− ωIL

dA

dt
= −γA

dD

dt
= v − cD

Theorem

Solutions system above with positive initial conditions remain
positive for all time
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Analysis Cont’d

Theorem

The model system has a disease-free equilibrium
E ∗0 = (0, 0, ev

µ(cg+v) , 0, 0,
v
c ), which is unstable if r2 > f2(0, 0,T ∗0 ),

where T ∗0 = ev
µ(cg+v) , and locally asymptotically stable if

r2 ≤ f2(0, 0,T ∗0 ). When r2 > f2(0, 0,T ∗0 ), a positive endemic
equilibrium E ∗ = (X ∗1 ,X

∗
2 ,T

∗, I ∗L ,A
∗,D∗) emerges, stability

unknown.

All variables except X2 are easily solvable and only have one
steady state

if r2 − f2(0, 0,T ∗0 ) < 0, there is no biologically relevant X2

value (X2 < 0).

if r2 − f2(0, 0,T ∗0 ) > 0, there must be some X ∗2 ∈ (0,K )
giving us an endemic equilibrium E ∗1 = (0,X ∗2 ,T

∗
1 , I
∗
L1, 0,

v
c )

(AI relapse)
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Analysis Cont’d

Jacobian for E ∗0

−d1a0 −m1 − f1(0, 0,T∗) 0 0 0 0 0

m1 r2 − f2(0, 0,T∗) 0 0 0 0

0 0 −µ T∗ ∂
∂IL

f3(0,T∗) 0 ceg
cg+v

T∗ ∂
∂X1

f4(0, 0) T∗ ∂
∂X2

f4(0, 0) 0 −ω 0 0

0 0 0 0 −γ 0

0 0 0 0 0 −c


λ = (−d1a0 −m1 − f1(0, 0,T∗), r2 − f2(0, 0,T∗),−µ,−ω,−γ,−c)

λ2 = r2 − f2(0, 0,T∗) determines stability
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Biological Implications

If we use our functions from the simulations,
r2 < f2(0, 0,T ∗)⇔ e1 ≤ g1r2

T∗

We cannot control parameters e1, e2, g1, c , µ, or g2, some are
personalized parameters

We can control dosage, v

e1 ≤ g1r2
T∗ ⇔ v > cg2g1r2µ

e1e2−g1r2µ
,

vcrit is minimal dosage to eradicate cancer

If able to measure other parameters individually, can set
proper dosage
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Reduction of System

Assume androgen deprivation therapy is constantly on

u(t) = 1
dA
dt = γ(a0 − A)− γa0u(t)→ dA

dt = −γA

Note cytokines (IL), androgen (A), dendritic cells (D) operate
on faster time scale

Let these variables go to steady state

IL =
Tf4(X,+X2)

ω
A = 0
D = v

c

System reduces to:
dX1
dt = −d1a0X1 −m1X1 − X1f1(X1,X2,T )
dX2
dt = r2X2

(
1− X1+X2

K

)
+ m1X1 − X2f2(X1,X2,T )

dT
dt = e2D

g2+D − µT + Tf3(IL,T )
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Further Reduction of System

dX1

dt
= X1 [−d1a0 −m1 − f1(X1,X2,T )]

≤ X1 [−β1k2 −m1]

≤ −aX1

It is apparent X1 that lim
t→∞

X1(t) = 0, so can further reduce system

to:

dX2

dt
= r2X2

(
1− X2

K

)
− X2f2(0,X2,T )

dT

dt
=

e2D

g2 + D
− µT + Tf3(IL,T )

(1)

The end behaviors of this system and the previous system are
asymptotically equivalent [12]
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Analysis of System

Theorem

The disease-free steady state of the reduced system (1) is globally
asymptotically stable under the following conditions:

i) µ > f3(IL,T ),

ii) r2 < f2(0, 0,T ∗0 ),

iii) µ2(cg+v)
ev > ∂

∂T f3(0,T ∗0 ).

In order to prove this theorem with simplicity, we break the proof
into several propositions:

1 Positivity and boundedness

2 Local asymptotic stability

3 Global asymptotic stability
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Biological interpretation of results

What do these conditions mean biologically?

i) µ > f3(IL,T ), : The death of T-cells is greater than the
production of T cells due to the cytokine IL2. This helps keep
our T cells at a temperate value.

ii) r2 < f2(0,T ), : The intrinsic growth rate of AI cells needs to
be smaller than the killing rate of AI cells by T cells. This was
a condition also present in the full system and is biologically
sensible.

iii) µ2(g+D)
eD > ∂

∂T f3(0,T ∗): Unsure how to interpret this
condition in a biological manner.

These biological conditions are very strong, and quite unlikely. The
growth rate of cancer cells tends to be extremely large, so these
assumptions may not be applicable in actual clinical setting.
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Stable Disease State

Theorem

The diseased steady state of (1) is globally asymptotically stable
under the following conditions:

i) µ > f3(IL,T ),

ii) r2 > f2(0, 0T ∗0 ),

iii) µ− f3(IL,T ) >
−X2

∂
∂X2

f2(X1,X2,T ) + T ∂
∂T f3(IL,T )− r2X2

K ∀X2,T ≥ 0.

In order to prove this theorem with simplicity, we break the proof
into several propositions:

1 Positivity and boundedness (condition i)

2 Local asymptotic stability (condition ii-iii)

3 Dulac Criteria (condition iii)

4 Global asymptotic stability
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Local Asymptotic Stability of E ∗0

Proposition

The limiting system (1) contains two equilibria: the disease-free
equilibrium, E ∗0 , and a secondary equilibrium, E ∗1 . The secondary
equilibrium is positive (assuming condition ii)). The disease-free
equilibrium is a saddle point (under conditions ii) and iii)).

The local stability of the disease-free steady state E ∗0 is exhibited
in the Jacobian:

r2 − f2(0,T ∗0 ) 0

T ∗0
∂
∂X2

f3(0,T ∗0 ) −µ+ T ∗0
∂
∂T f3(0,T ∗0 )


and the eigenvalues are given by:

λ1 = r2 − f2(0,T ∗0 ) > 0 by condition ii)
λ2 = −µ+ T ∗0

∂
∂T f3(0,T ∗0 ) < 0, by condition iii).

E ∗0 is a saddle point.
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Local Asymptotic Stability of E ∗1

The local stability of E ∗1 is exhibited in the Jacobian:
− r2X

∗
2

K − X ∗
2

∂
∂X2

f2(X ∗
2 ,T

∗
1 ) −X ∗

2
∂
∂T f2(X ∗

2 ,T
∗
1 )

T ∗
1

∂
∂X2

f3(I ∗L ,T
∗
1 ) −µ+ T ∗

1
∂
∂T f3(I ∗L ,T

∗
1 ) + f3(I ∗L ,T

∗
1 )

 .

Thus, the trace is given by (and < 0 by condition iii)

τ = − r2X ∗
2

K
− X ∗

2

∂

∂X2
f2(X ∗

2 ,T
∗)− µ+ T ∗ ∂

∂T
f3(I ∗L ,T

∗) + f3(I ∗L ,T
∗)

and the determinant is given by

∆ =

(
− r2X ∗

2

K
− X ∗

2

∂

∂X2
f2(X ∗

2 ,T
∗)

)(
−µ+ f3(IL,

∗ T ∗) + T ∗ ∂

∂T
f3(I ∗L ,T

∗)

)
+

(
X ∗

2

∂

∂T
f2(X ∗

2 ,T
∗)T ∗ ∂

∂X2
f3(I ∗L ,T

∗)

)
In order for E∗

1 to be stable we require τ < 0,∆ > 0: τ < 0 is given by
assuming condition iii), and ∆=?. Therefore, E∗

1 is either a stable
node/spiral or a saddle point
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Elimination of Limit Cycles

Proposition

The limiting system (1) has no limit cycles as long as condition iii)
is satisfied.

We will be using the Dulac criterion to establish that there are no
periodic orbits within. Using h(X2,T ) = 1

X2
, we can see that

∆ =
∂

∂X2

[
1

X2

(
r2X2

(
1− X2

K

)
− X2f2(X2,T )

)]
+

∂

∂T

[
1

X2

(
e2D

g2 + D
− µT + Tf3(IL,T )

)]
=

∂

∂X2

[
r2 −

r2X2

K
− f2(X2,T )

]
+

∂

∂T

[
e2D

X2(g2 + D)
− µT

X2
+

T (f3(IL,T ))

X2

]
= − r2

K
− ∂

∂X2
f2(X2,T )− µ

X2
+

f3(IL,T )

X2
+

T

X2

∂

∂T
f3(IL,T )

E. M. Rutter and Y. Kuang Immunotherapy Treatment Model For Prostate Cancer



Dulac - cont’d

To ensure that there are no periodic orbits, we must prove that
this quantity ∆ does not change sign. We re-write this condition:

∆ = − r2X2

K
− X2

∂

∂X2
f2(0,X2,T )− µ+ f3(0,X2,T ) + T

∂

∂T
f3(0,X2,T )

We know that for X2,T ≥ 0, ∆ < 0 by condition iii). Thus, the
Dulac criterion has ensured that we will have no periodic orbits in
our domain.
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Global Stability

By Poinecare-Bendixson, since solutions are positive, bounded and
there are two fixed points, one of which is a saddle, solutions do
one of three things:

All solutions tend to a fixed point (global stability)

All solutions tend to a periodic orbit (ruled out by Dulac
Criterion)

Heteroclinic or homoclinic orbits connect our two fixed points

We must show there are no heteroclinic or homoclinic orbits
connecting our fixed points
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Heteroclinic orbits and homoclinic orbits

We examine the stable manifold of E ∗0(
X2

T

)
=

(
0
1

)
.

By assumption ii), dX2(t)/dt > 0 near E ∗0 , so there cannot be
a heteroclinic orbit connecting E ∗0 to E ∗1
Assumption ii) also precludes a homoclinic orbit originating
from E ∗0
If E ∗1 is sable, there cannot be any homoclinic orbits
originating from E ∗1
If E ∗1 is a saddle, there is no homoclinic orbits (by Dulac)

By Poincare-Bendixson Theorem, the only option remaining is that
all solutions of (1) converge to E ∗1 . Thus, E ∗1 is globally
asymptotically stable.
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Biological interpretation of results

What do these conditions mean biologically?

i) µ > f3(IL,T ),: The death of T-cells is greater than the
production of T cells due to the cytokine IL2. This helps keep
our T cells at a temperate value. This showed up as a
condition in Theorem 4.1 as well.

ii) r2 > f2(0, 0,T ∗0 ), : The intrinsic growth rate of AI cells needs
to be larger than the killing rate of AI cells by T cells. This is
a logical assumption considering that we want stability of an
equilibrium that has non-zero X2 values.

iii) µ− f3(IL,T ) >
−X2

∂
∂X2

f2(X1,X2,T ) + T ∂
∂T f3(IL,T )− r2X2

K ∀X2,T ≥ 0.:
Unsure how to interpret this condition in a biological manner.
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Conclusions

Keeping total dosages the same, more frequent injections are
conducive to managing prostate cancer longer

Considered the case where injections are continuous (as in an
IV)

Increasing e1, the T-cell killing efficiency, disease shifts from AI
relapse to stable limit cycle behavior to eradication of disease
Determined personalized critical dosage value vcrit needed to
eradicate prostate cancer

Analyzed global dynamics for the reduced sysem, translated
some of the conditions back into biological meaning
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Future Work & Acknowledgements

Future work

Finish analysis for quasi-steady state system: are there limit
cycles?
Analysis of reduced system under no androgen deprivation
therapy
Compare to data

Acknowledgements

Dr. Yang Kuang
Alex P. Farrell

E. M. Rutter and Y. Kuang Immunotherapy Treatment Model For Prostate Cancer



Works Cited I

Richard R Berges, Jasminka Vukanovic, Jonathan I Epstein, Marne CarMichel, Lars Cisek, Douglas E

Johnson, Robert W Veltri, Patrick C Walsh, and John T Isaacs.
Implication of cell kinetic changes during the progression of human prostatic cancer.
Clinical Cancer Research, 1(5):473–480, 1995.

Nicholas Bruchovsky, Laurence Klotz, Juanita Crook, and S Larry Goldenberg.

Locally advanced prostate cancerbiochemical results from a prospective phase ii study of intermittent
androgen suppression for men with evidence of prostate-specific antigen recurrence after radiotherapy.
Cancer, 109(5):858–867, 2007.

Kirschner D. and Panetta J. C.

Modeling immunotherapy of the tumor-immune reaction.
J Math Biol, 1998.

Georg Gasteiger and Wolfgang Kastenmuller.

Foxp3+ regulatory t-cells and il-2: the moirai of t-cell fates?
Frontiers in immunology, 3, 2012.

Aiko Miyamura Ideta, Gouhei Tanaka, Takumi Takeuchi, and Kazuyuki Aihara.

A mathematical model of intermittent androgen suppression for prostate cancer.
Journal of nonlinear science, 18(6):593–614, 2008.

Martien L Kapsenberg.

Dendritic-cell control of pathogen-driven t-cell polarization.
Nature Reviews Immunology, 3(12):984–993, 2003.

Michael T Lotze and Angus W Thomson.

Dendritic cells: biology and clinical applications.
Access Online via Elsevier, 2001.

E. M. Rutter and Y. Kuang Immunotherapy Treatment Model For Prostate Cancer



Works Cited II

Travis Portz, Yang Kuang, and John D Nagy.

A clinical data validated mathematical model of prostate cancer growth under intermittent androgen
suppression therapy.
2012.

Steven A Rosenberg and Michael T Lotze.

Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes.
Annual review of immunology, 4(1):681–709, 1986.

Eric J Small, Paige Fratesi, David M Reese, George Strang, Reiner Laus, Madhusudan V Peshwa, and

Frank H Valone.
Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells.
Journal of Clinical Oncology, 18(23):3894–3903, 2000.

Veerle F Surmont, Eric RE Van Thiel, Karim Vermaelen, and Jan P Van Meerbeeck.

Investigational approaches for mesothelioma.
Frontiers in oncology, 1, 2011.

Horst R Thieme.
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Parameters

Parameter Biological Meaning Value Source

α1 AD cell proliferation rate 0.025/day [1]
β1 AD cell death rate 0.008/day [1]
k1 AD cell proliferation rate dependence on androgen 2ng/ml [5]
k2 low androgen level effect on AD cell death rate 8 [2]
k3 AD cell death rate dependence on androgen 0.5ng/ml [5]
k4 AI to AD mutation half-saturation 1.7
r2 AI net cell growth rate 0.006/day [1]
m1 maximum mutation rate from AD to AI 0.00005/day [5]
m2 maximum mutation rate from AI to AD 0.00015/day [8]
a0 base level androgen concentration 30 ng/ml [5]
γ androgen clearance and production rate 0.08/day [5]
ω cytokine clearance rate 10/day [9]
µ T cell death rate 0.03//day [3]
c dendritic cell death rate 0.14/day [7]
e1 maximum rate T cells kill cancer cells 0-1/day [3]

g1 cancer cell saturation level form T cell kill rate 10 x 109 cells [3]

e2 T cell maximum activation rate 20 x 106 cells/day [3]

g2 DC saturation level for T cell activation 400 x 106 cells [10]
e3 maximum clonal expansion rate 0.1245/day [3]
g3 IL-2 saturation level for T cell clonal expansion 1000 ng/ml [3]

e4 maximum rate T cells produce IL-2 5 x 10−6 ng/ml/cell/day [3]

g4 cancer cell saturation level for T cell stimulation 10 x 109 cells [3]

D1 DC vaccine dosage 300 x 106 cells [10]

c1 AD cell PSA level correlation 1 x 10−9 ng/ml/cell [5]

c2 AI cell PSA level corelation 1 x 10−9 ng/ml/cell [5]
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