Influence of Non-Physiological Blood Pressure Artifacts on Cerebral Autoregulation

Erica. M. Rutter¹ Adam Mahdi ²

¹Center for Research in Scientific Computation Department of Mathematics North Carolina State University

> ²Institute of Biomedical Engineering University of Oxford

JMM, 2017

- Biological Introduction
- Mathematical Introduction

2 Artifacts

- Implementation
- Effect on ARI

3 Conclusions and Further Directions

Biological Introduction

• Mathematical Introduction

Artifact

- Implementation
- Effect on ARI

3 Conclusions and Further Directions

Cerebral Autoregulation: Combination of various physiological processes modulating blood vessel properties in order to maintain constant cerebral blood flow despite changes in arterial blood pressure

Figure: Cerebral Autoregulation Zone. Source: Pires, Paulo W., et al. "The effects of hypertension on the cerebral circulation." American Journal of Physiology-Heart and Circulatory Physiology 304.12 (2013): H1598-H1614.[4]

- Imparied Autoregulation seen in patients with:
 - stroke
 - head injuries
 - chronic hypertension
- Impaired Autoregulation is associated with
 - brain tissue injury by changes in blood pressure
 - disruption of blood-brain barrier
 - death

How to measure?

ARI: Autoregulation Index (clinical tool) measures how well cerebral autoregulation is occurring

Erica. M. Rutter, Adam Mahdi

• Raw ABP signals are pre-processed to obtain a beat-to-beat average

• ARI is calculated using processed ABP and produces predicted CBFV

Data and Processing

- 36 one-minute baseline ABP and CBFV readings of normotensive subjects
- low-pass filtered using zero-phase 4th-order Butterworth filter in both directions with cutoff frequency of 20 Hz
- beat-to-beat detection
- downsampled to 10 Hz for uniform signals

- Biological Introduction
- Mathematical Introduction

Artifacts

- Implementation
- Effect on ARI

3 Conclusions and Further Directions

Tiecks et. al [5] formulated the following phenomenological model:

$dP = \frac{P - P_m}{P_m - P_{cr}}$	
$x_2 = x_2 + \frac{x_1 - t_2}{t_1}$	$\frac{2Dx_2}{T}$
$x_1 = x_1 + \frac{dP}{fT}$	- x ₂
$\hat{V}(T,D,K) = V_m(1+d)$	$P-Kx_2)$
$ARI = \min_{ARI \in [0,9]} $	$\hat{V}(T, D, K) - CBFV $
where <i>P</i> - ABP input,	P _m - mean ABP
\hat{V} - CBFV output,	V_m - mean CBFV

f - sampling frequency

 P_{cr} - critical pressure (12 mmHG)

JMM, 2017

ARI

т

D

к

10 / 29

Tiecks et. al [5] model was not specific of time points for x_1 and x_2 :

$$dP(t) = \frac{P(t) - P_m}{P_m - P_{cr}}$$
$$\hat{V}(t) = V_m (1 + dP - Kx_2(t))$$

Panerai et. al 1999 [3] Panerai 2010 et. al [1] Current Formulation $x_1(t) = x_1(t-1) +$ $x_1(t) = x_1(t-1) +$ $x_1(t) = x_1(t-1) +$ $\frac{\mathsf{dP}(\mathsf{t}) - x_2(t-1)}{fT}$ $\frac{\mathsf{dP}(\mathsf{t}-1)-x_2(t-1)}{fT}$ $\frac{\mathsf{d}\mathsf{P}(\mathsf{t}) - x_2(t-1)}{fT}$ $x_2(t) = x_2(t-1) +$ $x_2(t) = x_2(t-1) + x_2(t) = x_2(t-1) +$ $x_1(t-1) - 2Dx_2(t-1)$ $x_1(t) - 2Dx_2(t-1)$ $x_1(t-1) - 2Dx_2(t-1)$ fT fT fT

Comparisons

We observe little difference between the various formulations for models, so we stick with the 2016 "current" model

Mathematical Model

Final Formulation

$$dP(t) = \frac{P(t) - P_m}{P_m - P_{cr}}$$

$$x_1(t) = x_1(t-1) + \frac{dP(t) - x_2(t-1)}{fT}$$

$$x_2(t) = x_2(t-1) + \frac{x_1(t-1) - 2Dx_2(t-1)}{fT}$$

$$\hat{V}(t, T, D, K) = V_m (1 + dP - Kx_2(t))$$

$$ARI = \min_{ARI \in [0,9]} ||\hat{V}(t, T, D, K) - CBFV(t)||$$

where

JMM, 2017 13 / 29

- Biological Introduction
- Mathematical Introduction

Artifacts

- Implementation
- Effect on ARI

ABP Measurement

Setup

Figure: ABP measurement set-up. Source: "Arterial Line and Intra-arterial Blood Pressure Monitoring." Life in the Fast Lane Medical Blog. 14 June 2015. Web. 03 Jan. 2017

Erica. M. Rutter, Adam Mahdi

Artifact Influence on ARI

JMM, 2017 15 / 29

< □ > < ---->

ABP Measurement

Non-Physiological Artifacts

Figure: Where non-physiological artifacts can occur in ABP measurement.Source: "Arterial Line and Intra-arterial Blood Pressure Monitoring." Life in the Fast LaneMedical Blog. 14 June 2015. Web. 03 Jan. 2017Image: Comparison of the fast LaneImage: Comparison of the fast LaneMedical Blog. 14 June 2015. Web. 03 Jan. 2017Image: Comparison of the fast Lane

Erica. M. Rutter, Adam Mahdi

Artifact Influence on ARI

JMM, 2017 16 / 29

Non-Physiological Artifacts

Figure: Real examples of non-physiological artifacts in ABP measurements. Source: Li, Qiao et. al. "Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator." Biomedical engineering online 8.1 (2009):.[2]

Non-Physiological Artifacts

Implementation

Only raw ABP data is altered to include non-physiological artifacts

CBFV data is not altered!

- Each artifact is inserted in to the raw ABP measurements 5 seconds into the time series
- Severity of artifacts are measured in 'levels' where level 0 corresponds to no artifact and level 20 corresponds to maximal artifact.
- For each artifact formulation, there may be multiple parameters governing the shape of the artifact. Upper and lower bounds will be given for each parameter. Levels 0-20 correspond to linearly increasing all parameters from their lower to upper bounds

$$A_{max}(\alpha, L, P_{max}) = tanh(\alpha \pi t)(P_{max} - P_{dias}) + P_{dias}$$

Parameter	Lower Bound	Upper Bound	Meaning
α	0	0.1	saturation rate
P_{\max} (mmHG)	190	210	maximal ABP
L (s)	0	5	total time of artifact

э

Image: A match a ma

Artifact 2 Square Wave Pulse

Parameter	Lower Bound	Upper Bound	Meaning
P_{\max} (mmHG)	190	210	maximal ABP
L (s)	0	10	total time of artifact

Erica. M. Rutter, Adam Mahdi

JMM, 2017 21 / 29

- 一司

Reduces systolic pressure linearly over the span of 45 seconds to the value

 $P_{\rm end} = MP_{\rm sys}$

Parameter	Lower Bound	Upper Bound	Meaning
М	1	0.1	ratio at end of artifact

Artifact 4

Impulse

Parameter	Lower Bound	Upper Bound	Meaning
<i>L</i> (s)	0	2	total time of artifact

JMM, 2017 23 / 29

< 一型

-∢ ∃ ▶

- Biological Introduction
- Mathematical Introduction

Artifacts

- Implementation
- Effect on ARI

Artifact Effects

Erica. M. Rutter, Adam Mahdi

Artifact Influence on ARI

JMM, 2017 25 / 29

Definition

The *critical artifact size* is the level of artifact which generates a change of 10% change in the mean ARI of all patients.

Artifact	Critical size	Parameters		
A_{max}	5.21 ± 2.1	L=1.3 s	$P_{max} = 195.2 \mathrm{mmHg}$	$\alpha = 0.026$
$A_{\rm sw}$	2.75 ± 2.1	L=1.4 s	$P_{max} = 192.8\mathrm{mmHg}$	
A_{pp}	8.06 ± 5.1	M = 0.64		
A _{imp}	11.52 ± 3.9	L = 1.05 s		

Table: The mean critical artifact size \pm standard deviation and the corresponding parameters that generate it.

- ARI values can be sensitive to non-physiological artifacts present in data.
- Saturation to maximal ABP and square wave pulses will *always* predict an ARI value of 9 if present long enough.
- Reduced pulse pressure and impulse artifacts are not as sensitive but can still change ARI values up to 10% if present long enough.
- Further Directions
 - Sensitivity of parameters of artifacts
 - How do multiple artifacts or repetition change ARI values?
 - Implement detection system to filter out nonphysiological artifacts
 - Hypertensive vs. normotensive

Acknowledgements

Group 1 Participants:

- P. Sang Chalacheva
- Katrina Johnson
- Greg Mader
- Kevin O'Keeffe

Grant Number: 1321794

Works Cited I

Dineen, Nicky E and Brodie, F G and Robinson, Thompson G and Panerai, Ronney B. Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.

Journal of applied physiology, 108(3):604–613, 2010.

Li, Qiao and Mark, Roger G and Clifford, and Gari D.

Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator.

Biomedical Engineering Online, 8(1):2009.

Panerai, Ronney B and Dawson, Suzanne L and Potter, and John F. Linear and nonlinear analysis of human dynamic cerebral autoregulation. *American Journal of Physiology-Heart and Circulatory Physiology*, 277(3): H1089–H1099, 1999

Pires, Paulo W and Ramos, Carla M Dams and Matin, Nusrat and Dorrance, and Anne M. The effects of hypertension on the cerebral circulation.

American Journal of Physiology-Heart and Circulatory Physiology, 204(12):H1598–H1614, 2013.

Tiecks, Frank P and Lam, Arthur M and Aaslid, Rune and Newell, and David W. Comparison of static and dynamic cerebral autoregulation measurements. *Stroke*, 26(6):1014–1019, 1995.