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Introduction

Cancer is a major health problem today, with an estimated
1.66 million new cancer cases and over 580,000 projected
cancer deaths in the USA in 2015 [1]

Mathematical models can be a helpful tool in understanding
all stages of the disease, from growth to treatment

As spatial structure is an important component of brain
cancer, PDE’s are often used. The models are:

1 One equation PDE using density dependent diffusion, using in
vitro data

2 Two equation PDE using in vitro data
3 Reaction-Diffusion PDE using in vivo data
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Introduction: Glioblastoma

Glioblastoma Multiforme (GBM) is a deadly primary brain
tumor

GBM is characterized by both high proliferation and diffusivity

Mean Survival time with treatment is less than 15 months
after detection

Begins avascularaly, so early stages can be modeled by
spheroids

Symptoms
include

hemorrhaging
nausea
vomiting
headaches
memory loss
seizures Sagittal cross-section of human brain with GBM
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A Biological Introduction

In 2007, Stein et. al performed cell line
experiments on most common mutation
of Epidermal Growth Factor Receptor
gene (U87∆EGFR) and wild-type EGFR
(U87WT)

This proved there are distinct behavioral
differences between ’migrating’ cells and
’proliferating cells’

Wild type cells migrated more and
mutated EGFR proliferated more

Concluded that migrating and
proliferating cells must be modeled
separately: Go or Grow

Experimental images
from several days with
proliferating cell radius
and migratory radius [2]
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Stein et. al Mathematical Model

Governing behavior of migratory cells

∂ui (r , t)

∂t
= D∇2ui︸ ︷︷ ︸

diffusion

+ gui

(
1− ui

umax

)
︸ ︷︷ ︸

logistic growth

− vi∇r ·ui︸ ︷︷ ︸
taxis

+ sδ(r − R(t))︸ ︷︷ ︸
shed cells from core

ui (r , t) invasive/migratory cell population at position r and time t

D diffusion constant O(10−4)

g growth rate O(0.1)/day

umax carrying capacity O(108)

vi rate invasive cells move away from tumor core O(10−2)

s shed rate of tumor core O(105) cells/day

R(t) radius of proliferating core at time t

Problematic numerically and analytically (how to simulate Dirac
delta?)
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Biological and Mathematical Questions

Biological Questions

Do we really need separate equations for the migratory cells
and proliferating cells?
Is there really directed movement bias away from the
proliferating core?

Mathematical Questions

Can we create a biologically-driven model that fits the data
better than the proposed 2-equation model?
Do our optimized parameters make biological sense?
Can we analyze the traveling wave solutions and corroborate
the minimum wave speed computationally?

E. M. Rutter, T. L. Stepien, Y. Kuang PDE Models for Glioma Growth



Density Dependent Diffusion

Replace cell shedding term with density-dependent diffusion

Invasive cells (low density) diffuse more than proliferative cells
(high density)

D(u∗) = D1 −
D2(u∗)n

an + (u∗)n

Assumptions:

D1, D2, a, n > 0

|D1| > |D2| to avoid
numerical issues

u∗ = u
umax
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Low densities correspond to high diffusion and higher densities
correspond with lower diffusion
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Density Dependent Diffusion Model

∂u

∂t
= ∇ ·

(
D

(
u

umax

)
∇u
)

︸ ︷︷ ︸
density-dependent diffusion

+ gu

(
1− u

umax

)
︸ ︷︷ ︸

logistic growth

− sgn(x)νi∇ · u︸ ︷︷ ︸
taxis

,

Parameters

All parameters non-negative

umax = carrying capacity density = 4.2× 108 cells/cm3

Boundary conditions

Far from the tumor, u(x , t) = 0

Initial condition

Initial density profile based on experimental cell density data
at Day 0:

u(x , 0) =

{
umax, ‖x‖ ≤ 210µm

0, elsewhere
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Traveling Wave Speed

We begin by non–dimensionalizing the equation to get

∂u

∂t
= D(u)

∂2u

∂x2
+ D ′(u)

(
∂u

∂x

)2

− v
∂u

∂x
+ u (1− u),

Our traveling wave solution is of the form

u(x , t) = w(x − ct) = w(z)

which we substitute into the above PDE:

w ′′(z) +
1

D(w(z))

(
(c − v)w ′(z) + D′(w(z))(w ′(z))2 + w(z)(1− w(z))

)
= 0
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Traveling Wave Speed cont’d

Rewriting this as a system of first-order differential equations

w ′ = y ,

y ′ = − 1

D(w)

(
(c − v)y + D ′(w)y2 + w(1− w)

)
We have two equilibria: (1,0), and (0,0).

For stability we examine Jacobian for (1, 0) first:

J(1, 0) =

(
0 1
1

D(1)
−(c−v)
D(1)

)
det J(1, 0) = −1

D(1) < 0, so (1, 0) is a saddle point
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Traveling Wave Speed cont’d

We examine Jacobian for (0, 0) for stability, assuming c > v :

J(0, 0) =

(
0 1
−1
D(0)

−(c−v)
D(0)

)
,

det J(0, 0) =
1

D(0)
> 0

τJ(0, 0) =
−(c − v)

D(0)
< 0

(0, 0) is then either a stable node or a stable spiral. In order to
have biologically relevant results, we cannot have a spiral, so we
get the condition to be a stable node:

c ≥ cmin = 2
√
D1 + v , non-dimensional

c ≥ cmin = 2
√

D1g + νi , dimensional
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Wave Speed Analysis

Minimum wave speed (dimensionalized)

c ≥ cmin = 2
√
D1g + νi

For full details on forming the trapping region, see Stepien et. al [3]
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Numerical Methods

Use fminsearch algorithm in MATLAB® to minimize the error
function:

err =
1

(N + M)− q − 1

[
N∑
t=1

|rdata(t)− rsimulation(t)|
rdata(t)

+
M∑
i=1

|udata(3, xi )− usimulation(3, xi )|
udata(3, xi )

]

N + M represents total number of data points

q is number of parameters being optimized
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Optimization

Started from various initial guesses

Constrained to ensure parameters are non-negative

Numerical solution of our density-dependent diffusion GBM model with
optimized parameter values compared to experimental data and simulations
from Stein et al. [2]

.D1 = 5.5408× 10−6 cm2/day, D2 = 5.3910× 10−6 cm2/day,

a = 0.021188 cells/cm3, n = 1.2848,

g = 0.49120/day, νi = 4.6801× 10−5 cm/day
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Traveling Wave Speed

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Distance from center (cm)

c
e
ll 

d
e
n
s
it
y
 (

c
e
lls

/c
m

)

 

 

40 days

80 days

120 days

160 days

200 days
Extended domain and
time of simulation

Track 10% of maximum
through time and use
polyfit to find wave speed

Theoretical minimum wave speed cmin ≈ 0.003346 cm/day,
simulated wave speed c = 0.02255 cm/day

Simulated wave speed is magnitudes larger than theoretical
minimum wave speed

Where does the discrepancy come from?
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Traveling Wave Speed Cont’d

Observable wave speed much larger than theoretical minimum
wave speed

Information is lost through the linearization process
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Observable wave speed appears to increase linearly through
values of D2

When D2 = 0, observable matches theoretical wave speed
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Conclusions and Further Directions

Conclusions

Created a density-dependent diffusion equation modeling in
vitro growth of GBM
Sensitivity analysis revealed all parameters important
Optimized parameters to generate a fit better than the
two-equation model
Compared theoretical minimum wave speed to observed wave
speed

Further Directions

Perform computational analysis to determine how each
parameter affects observed wave speed.
How to accurately determine observed wave speed analytically
Stability of wave
Use density-dependent diffusion equation for in vivo modeling
– is it accurate?
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Model Formulation

We have two populations: Migrating cells, M(x , t), and
Proliferating Cells, P(x , t)) and T = M + P

∂M

∂t
= D∇2M︸ ︷︷ ︸

diffusion

+ ε
T n

T n + Kn
M

P︸ ︷︷ ︸
switch form prolif to mig

− k
Kn
P

T n + Kn
P

M︸ ︷︷ ︸
switch form mig to prolif

− µM︸︷︷︸
death

∂P

∂t
= gP

(
1− T

Tmax

)
︸ ︷︷ ︸

logistic growth

− ε
T n

T n + Kn
M

P︸ ︷︷ ︸
switch form prolif to mig

+ k
Kn
P

T n + Kn
P

M︸ ︷︷ ︸
switch form mig to prolif

Boundary conditions and initial conditions

Far from the tumor, u(x , t) = 0
Initial density profile based on experimental cell density data
at Day 0:

u(x , 0) =

{
umax, ‖x‖ ≤ 210µm

0, elsewhere
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Traveling Wave Solutions

We assume a traveling wave solution of the form:

M(x , t) = u(x − ct) = u(z)

P(x , t) = v(x − ct) = v(z)

where c ≥ 0 is the speed of the traveling wave.

Substituting into our PDE, we get:

c
du

dz
+ D

d2u

dz2
+ ε

(u + v)n

(u + v)n + Kn
M

v − k
Kn
P

(u + v)n + Kn
P

u − µu = 0

c
dv

dz
+ gv

(
1− u + v

Tmax

)
− ε (u + v)n

(u + v)n + Kn
M

v + k
Kn
P

(u + v)n + Kn
P

u = 0
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Traveling Wave cont’d

We break into a system of 3 first-order ordinary differential
equations:

u′ = w

w ′ = − 1

D

[
cw + ε

(u + v)n

(u + v)n + Kn
M

v − k
Kn
P

(u + v)n + Kn
P

u − µu
]

v ′ = −1

c

[
gv

(
1− u + v

Tmax

)
− ε (u + v)n

(u + v)n + Kn
M

v + k
Kn
P

(u + v)n + Kn
P

u

]
We can see that (0,0,0) is certainly an equilibrium, as well as some
E ∗
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Traveling Wave cont’d

We examine the Jacobian for (0,0,0), which is where our previous
model derived its minimum wave speed condition:

J(0, 0, 0) =

 0 0 1

−k
c −g

c 0
k+µ
D 0 − c

D

 ,

Which has eigenvalues of:

λ1 = −g

c

λ2 = −1

2

[
c

D
+

√( c

D

)2
+ 4

(
k + µ

D

)]

λ2 = −1

2

[
c

D
−

√( c

D

)2
+ 4

(
k + µ

D

)]
So (0,0,0,) is a saddle
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Traveling Wave cont’d

E ∗, the (at least one) other equilibrium is not so easy to solve for :

g

(
1− U + V

Tmax

)
V − εk (U + V )n

(U + V )n + Kn
M

V + k
Kn
P

(U + V )n + Kn
P

U = 0

εk
(U + V )n

(U + V )n + Kn
M

V − k
Kn
P

(U + V )n + Kn
P

U − µU = 0

We can add the equations together to solve for U

U =
g(Tmax − V )V

µTmax + gV
(1)

But plugging back into the above to solve for V is problematic
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Traveling Wave Solutions Cont’d

We assume ahead of the wave front:

u(z) = ûe−θz

v(z) = v̂ e−θz

Substituting into our PDE, we get:

−cθû + Dθ2û + ε
(û + v̂)ne−nθz

(û + v̂)ne−nθz + Kn
M

v̂ − k
Kn
P

(û + v̂)ne−nθz + Kn
P

û − µû = 0

−cθv̂ + gv̂

(
1−

(û + v̂)e−nθz

Tmax

)
− ε

(û + v̂)ne−nθz

(û + v̂)ne−nθz + Kn
M

v̂ + k
Kn
P

(û + v̂)ne−nθz + Kn
P

û = 0
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Traveling Wave Solutions Cont’d

Keeping only leading order terms:

−cθû + Dθ2û − kû − µû = 0

−cθv̂ + gv̂ + kû = 0

We solve the first equation for θ

θ =
1

2

[
c

D
±

√( c

D

)2
+ 4

(
k + µ

D

)]
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Traveling Wave Solutions Cont’d

Now we examine the second equation

cθv̂ = gv̂ + kû = 0

And using the positive root of θ(c), since û, v̂ ≥ 0:

f (c) := cθ(c) = g + k
û

v̂

Since û, v̂ > 0, and assuming migrating population is at most the
same as proliferating population far from the tumor, we can state
that û

v̂ ≥ 0 or

f (c) ≥ g
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Traveling Wave Solutions Cont’d

We see that f (0) = 0 and that f ′(c) > 0 for c > 0, so there is a
positive minimum wave speed cm such that f (cm) = g

f (c) = c
1

2

[
c

D
+

√( c

D

)2
+ 4

(
k + µ

D

)]
= g

Solving for c we obtain

cm1 = g

√
D

g + k + µ

This is our minimum wave speed of the tumor growth
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Traveling Wave Solutions Cont’d

On the other hand, we can say that at most we expect an equal
ratio of proliferating cells and migrating cells, meaning û

v̂ ≈ 1, or
that migrating cells dominate proliferating cells away from the
tumor û

v̂ ≥ 1 so there is a positive minimum wave speed cm such
that f (cm) = g + k

f (c) = c
1

2

[
c

D
+

√( c

D

)2
+ 4

(
k + µ

D

)]
= g + k

Solving for c we obtain

cm2 = (g + k)

√
D

g + 2k + µ

This is our minimum wave speed of the tumor growth
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Simulations

We expect the wave speed to follow:

cm1 = g
√

D
g+k+µ ≤ cm ≤ (g + k)

√
D

g+2k+µ = cm2
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Optimization

Constrained to ensure parameters are non-negative

Numerical solution of 2-equation GBM model with optimized parameter values
compared to experimental data and simulations from Stein et al. [2]

.D = 2.992× 10−4 cm2/day, g = 1.75/day,

k = 0.02891, µ = 0.01456/day,

KM = 0.7559, KP = 1.4528× 10−5,

ε = 0.2639

Fit is worse than the density-dependent diffusion model and on par
with the Stein et. al fit

E. M. Rutter, T. L. Stepien, Y. Kuang PDE Models for Glioma Growth



Conclusions and Further Directions

Conclusions

Created a 2–equation modeling in vitro growth of GBM
Determined theoretical minimum wave speed
Optimized parameters to see that the two—equation model is
inferior to the density-dependent diffusion at fitting the
experimental data – maybe GBM should not be modeled with
constant diffusion
Compared theoretical minimum wave speed(s) to observed
wave speed

Further Directions

Determine what û
v̂ is to figure out our cm

Incorporate density-dependent diffusion equation in M
Use density-dependent diffusion equation for in vivo modeling
– is it accurate?
Consider specialized cases such as µ = 0

E. M. Rutter, T. L. Stepien, Y. Kuang PDE Models for Glioma Growth



Outline

1 Introduction

2 One Equation Density-Dependent Diffusion in vitro Model
Analysis of Traveling Waves
Numerical Simulations

3 Two Equation in vitro Model
Analysis of Traveling Waves
Numerical Simulations

4 In vivo Model of GBM Growth in Murine Brains
Experimental Data and Creation of Computational Domain
Numerical Simulations

E. M. Rutter, T. L. Stepien, Y. Kuang PDE Models for Glioma Growth



Introduction: In vivo Experimental Data

5 immune-competent mice were cranially injected with GL261
cell line

Mice were imaged using MR 5 times (day 11, 15, 18, 22, 25)

Mice were euthanized on day 26 brains harvested for histology

MR images from day 25 for all mice at the same location
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Creation of Computational Domain

Mimics® uses thresholding to generate rough segmentation of
brain

Edges smoothed by hand to ensure a computationally-friendly
domain

Each mouse is registered to their third time point using
GeoMagic® to ensure computational domain remains
consistent throughout simulation

MATLAB® is used to apply the affine matrix from
GeoMagic® to register all brains to their third time point
geometry

Uniform matrix saved with brain geometries
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Mathematical Equation

∂u

∂t
(x, t) = D∇2u(x, t)︸ ︷︷ ︸

diffusion

+ ρu(x, t) (1− u(x, t))︸ ︷︷ ︸
growth

, x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω

u(x, 0) = f (x), x ∈ Ω

Where Ω is brain geometry with ventricles segmented out, ∂Ω is
the boundary of the brain and ventricles, and f (x) depends on the
initial condition choice

D represents diffusion coefficient

ρ represents intrinsic growth rate of GL261
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Computational Methods

3D finite difference model

Spatial discretization is centered finite difference

Ode45 used to step through time

Code written as a MCTP project by Barrett Anderies

To optimize the parameters ,we examine the error function
based on the Jaccard Index

error =
4∑

k=1

(
1− data ∩ simulation

data ∪ simulation

)
where k represent the time points we have data for.
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Jaccard Distance

The error function is based on the Jaccard distance:

error =
1

n

n∑
k=1

(
1− data ∩ simulation

data ∪ simulation

)

Union and intersection of overlapping
sets

Graph displaying the Jaccard distance
‘score’ for various overlap values
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Biological and Mathematical Questions

Biological Question: Why such large
variance in final tumor size between
mice?

1 Hypothesis 1 (H1): Natural
variations in D and ρ account for the
change

2 Hypothesis 2 (H2): Morphological
chages occur, meaning D and ρ
should not be constant.

3 Hypothesis 3 (H3): Short-term
solutions changing D and ρ.

Total visible volume for
each mouse at each time
point

Mathematical Questions

Can we use a simple model to test the above biological
hypotheses?
Can we optimize to find biologically relevant parameters?
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How to Test Hypotheses?

We need methods to test our hypotheses

1 Hypothesis 1: We simply optimize D and ρ over all times
points for each mouse, using the Jaccard index at each time
point.

2 Hypothesis 2: We optimize from previous optimized time
point, i.e. we must optimize day 11 to day 14 first, then use
the optimal simulated tumor to initialize day 14 to day 18.

3 Hypothesis 3: We optimize from MR-generated time point.
At each new optimization, we use the MR image as
initialization. i.e. for day 14 to day 18, we use MR image
from day 14 as initialization.
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Results For Representative Mouse – Hypothesis 1

A B

C D

Simulated tumor (red) superimposed on MR
images for Mouse 1 on (A) Day 15; (B)
Day 18; (C) Day 22, and (D) Day 25 following
implantation.

D:
413.77 (µm2/h)

ρ:
0.0188 (h−1)

Jaccard Distance:
0.4524

Percentage Overlap:
70.8%
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Results For Representative Mouse – Hypothesis 2

A B

C D

Simulated tumor (red) superimposed on MR
images for Mouse 1 on (A) Day 15; (B)
Day 18; (C) Day 22, and (D) Day 25 following
implantation.

D(s):
139.24 (µm2/h)
839.93 (µm2/h)
1047.6 (µm2/h)
968.75 (µm2/h)

ρ:
0.0182 (h−1)
0.0248 (h−1)
0.0192 (h−1)
0.0082 (h−1)

Jaccard Distance:
0.4365

Percentage Overlap:
72%
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Results For Representative Mouse – Hypothesis 3

A B

C D

Simulated tumor (red) superimposed on MR
images for Mouse 1 on (A) Day 15; (B)
Day 18; (C) Day 22, and (D) Day 25 following
implantation.

D(s):
139.24 (µm2/h)
233.97 (µm2/h)
1156.2 (µm2/h)
1305.6 (µm2/h)

ρ:
0.0182 (h−1)
0.0499 (h−1)
0.0178 (h−1)
0.0105 (h−1)

Jaccard Distance:
0.3673

Percentage Overlap:
77%
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Remaining Information

Table : Values of estimated parameters for Mouse 2 and 3 and each hypothesis
at each time point using the 3D finite difference method. Minimization is
performed with respect to Jaccard distance

Mouse Hypothesis Time
Point

D
(µm2/h)

ρ (h−1) velocity
2
√
Dρ

(µm/h)

Error Overlap
(%)

2 1 – 319.22 0.0167 4.6178 0.4528 70.7

2 2 558.74 0.0235 7.2472 0.1151 70.1
3 206.21 0.0100 2.8720 0.1067 72.9
4 346.35 0.0055 2.7604 0.1042 73.7
5 886.07 0.0104 6.0713 0.0979 75.6

3 2 558.74 0.0235 7.2472 0.1151 70.1
3 950.79 0.0051 4.4041 0.0846 79.6
4 77.734 0.0369 3.3873 0.0621 85.8
5 94.161 0.0520 4.4255 0.0643 85.2

3 1 – 651.17 0.0177 6.7899 0.2833 83.5

2 4 859.70 0.0127 6.6085 0.1408 83.6
5 454.29 0.0236 6.5487 0.1364 84.2

3 4 859.704 0.0127 6.6085 0.1408 83.6
5 1552.1 0.0200 11.1431 0.1027 88.6
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Wave Speed

Recall for reaction-diffusion equation, the minimum wave speed is
cmin = 2

√
Dρ. Examining the wave speeds for our simulations:
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Estimated wave speeds for various tumor volumes. Red represents hypothesis 3,
blue is hypothesis 2. Mouse 1: triangles; Mouse 2 plusses; Mouse 3 circles.
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Conclusions and Further Directions

Conclusions

Generated uniform grid from actual MR images
Used 3D finite difference code to fit simulated tumor to actual
tumor
Tested hypotheses as to why the final tumor sizes are so
different
Measured wave speeds which match other rat and human
experimental data

Further Directions

Incorporating more complexity into the model to achieve a
better fit
Use more realistic diffusion (Diffusion Tensor Imaging)
Use histology to quantify relationship between visible tumor on
MR image and carrying capacity/tumor density
Incorporate more realistic brain structure – mass effect via
finite element method
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