A Mathematical Model of GL261-Luc2 Glioma Growth in Mice

Erica M. Rutter Arizona State University

SIAM LS 2016 Mini-Symposium 24: Mathematical Methodologies for Parameter Estimation July 11, 2016

E. M. Rutter A Mathematical Model of Gl261-Luc2 Glioma Growth in Mice

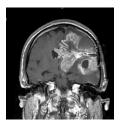

- 2 Experimental Work
- 3 Mathematical Model

Image: Image:

Introduction: Glioblastoma Multiforme (GBM)

- Glioblastoma Multiforme (GBM) is a deadly primary brain tumor
- GBM is characterized by both high proliferation and diffusivity
- Mean Survival time with treatment is less than 15 months after detection
- MR (magnetic resonance) imaging only shows some of tumor
- Symptoms include
 - hemorrhaging
 - nausea
 - vomiting
 - headaches
 - memory loss
 - seizures

Sagittal cross-section of human brain with GBM

2 Experimental Work

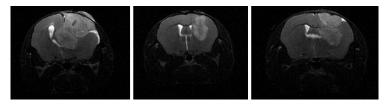
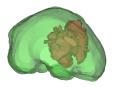


Image: Image:

Introduction: In vivo Experimental Data

- 5 immune-competent mice were cranially injected with GL261 cell line
- Mice were imaged using MR 5 times (day 11, 15, 18, 22, 25)
- Mice were euthanized on day 26 brains harvested for histology



MR images from day 25 for all mice at the same location

Creation of Computational Domain

- Mimics[®] uses thresholding to generate rough segmentation of brain
- Edges smoothed by hand to ensure a computationally-friendly domain
- Each mouse is registered to their third time point using GeoMagic[®] to ensure computational domain remains consistent throughout simulation
- MATLAB[®] is used to apply the affine matrix from GeoMagic[®] to register all brains to their third time point geometry
- Uniform matrix saved with brain geometries

Human brain volume generated from MR images

E. M. Rutter A Mathematical Model of Gl261-Luc2 Glioma Growth in Mice

Image: Image:

Mathematical Equation

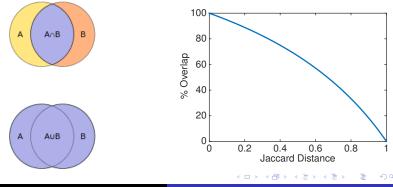
$$\begin{split} \frac{\partial u}{\partial t}(\mathbf{x},t) &= \underbrace{D\nabla^2 u(\mathbf{x},t)}_{\text{diffusion}} + \underbrace{\rho u(\mathbf{x},t) \left(1 - u(\mathbf{x},t)\right)}_{\text{growth}}, \qquad \mathbf{x} \in \Omega \\ & \frac{\partial}{\partial x} u(\mathbf{x},t) = 0, \qquad \mathbf{x} \in \partial\Omega \\ & u(\mathbf{x},0) = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega \end{split}$$

Where Ω is brain geometry with ventricles segmented out, $\partial \Omega$ is the boundary of the brain and ventricles, and f(x) depends on the initial condition choice (50% max)

- D represents diffusion coefficient
- ρ represents intrinsic growth rate of GL261

Computational Methods

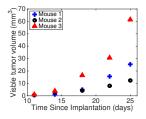
- 3D finite difference model
- Spatial discretization is centered finite difference
- $\bullet~\mathrm{ODE45}$ used to step through time
- Code written as a MCTP project by Barrett Anderies
- To optimize the parameters ,we examine the error function based on the Jaccard Distance and use FMINSEARCH (Nelder-Mead)


$$\mathsf{error} = rac{1}{n} \sum_{k=1}^n \left(1 - rac{\mathsf{data} \cap \mathsf{simulation}}{\mathsf{data} \cup \mathsf{simulation}}
ight)$$

where k represent the time points we have data for.

Jaccard Distance

$$\operatorname{error} = \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{\operatorname{data} \cap \operatorname{simulation}}{\operatorname{data} \cup \operatorname{simulation}} \right)$$


where data is visible tumor on MRI and simulation is above 16% carrying capacity

E. M. Rutter A Mathematical Model of Gl261-Luc2 Glioma Growth in Mice

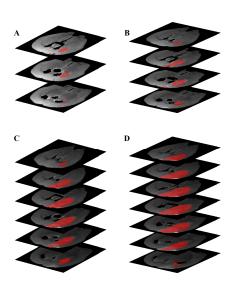
Biological and Mathematical Questions

- Biological Question: Why such large variance in final tumor size between mice?
 - Hypothesis 1 (H1): Natural variations in D and ρ account for the change
 - Pypothesis 2 (H2): Morphological chages occur, meaning D and ρ should not be constant.
 - Output Short-term solutions changing D and ρ.
 - Mathematical Questions
 - Can we use a simple model to test the above biological hypotheses?
 - Can we optimize to find biologically relevant parameters?

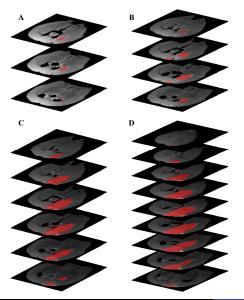
We need methods to test our hypotheses

- O Hypothesis 1: We simply optimize D and ρ over all times points for each mouse, using the Jaccard index at each time point.
- Hypothesis 2: We optimize from previous optimized time point, i.e. we must optimize day 11 to day 14 first, then use the optimal simulated tumor to initialize day 14 to day 18.
- Hypothesis 3: We optimize from MR-generated time point. At each new optimization, we use the MR image as initialization. i.e. for day 14 to day 18, we use MR image from day 14 as initialization.

通 と イ ヨ と イ ヨ と

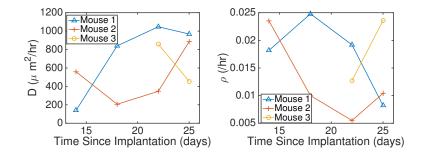


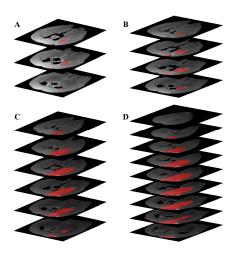
- 2 Experimental Work
- 3 Mathematical Model


Image: Image:

Results For Representative Mouse – Hypothesis 1

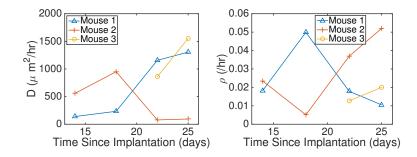
- D: 413.77 (μm²/h)
- ρ:
 0.0188 (h⁻¹)
- Jaccard Distance: 0.4524
- Percentage Overlap: 70.8%


Results For Representative Mouse – Hypothesis 2


- D(s): 139.24 (μm²/h) 839.93 (μm²/h) 1047.6 (μm²/h) 968.75 (μm²/h)
- ρ:
 0.0182 (h⁻¹)
 0.0248 (h⁻¹)
 0.0192 (h⁻¹)
 0.0082 (h⁻¹)
- Jaccard Distance: 0.4365
- Percentage Overlap: 72%

E. M. Rutter A Mathematical Model of Gl261-Luc2 Glioma Growth in Mice

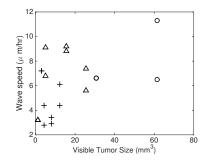
Parameter Variance through Time



Results For Representative Mouse – Hypothesis 3

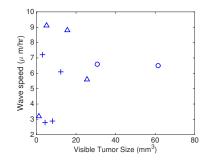
- D(s): 139.24 (μm²/h) 233.97 (μm²/h) 1156.2 (μm²/h) 1305.6 (μm²/h)
- ρ:
 0.0182 (h⁻¹)
 0.0499 (h⁻¹)
 0.0178 (h⁻¹)
 0.0105 (h⁻¹)
- Jaccard Distance: 0.3673
- Percentage Overlap: 77%

Parameter Variance through Time

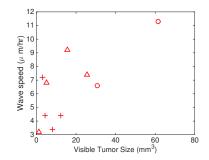

Remaining Information

Mouse	Hypothesis	Time Point	D (μm²/h)	$ ho$ (h $^{-1}$)	velocity $2\sqrt{D ho}$ $(\mu$ m/h)	Error	Overlap (%)
2	1	-	319.22	0.0167	4.6178	0.4528	70.7
	2	2 3 4 5 2	558.74 206.21 346.35 886.07	0.0235 0.0100 0.0055 0.0104 0.0235	7.2472 2.8720 2.7604 6.0713	0.1151 0.1067 0.1042 0.0979	70.1 72.9 73.7 75.6 70.1
	3	2 3 4 5	558.74 950.79 77.734 94.161	0.0235 0.0051 0.0369 0.0520	7.2472 4.4041 3.3873 4.4255	0.1151 0.0846 0.0621 0.0643	70.1 79.6 85.8 85.2
3	1 2	- 4 5	651.17 859.70 454.29	0.0177 0.0127 0.0236	6.7899 6.6085 6.5487	0.2833 0.1408 0.1364	83.5 83.6 84.2
	3	4 5	859.704 1552.1	0.0127 0.0200	6.6085 11.1431	0.1408 0.1027	83.6 88.6

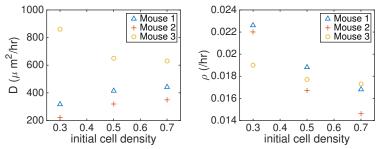
<> E ► < E</p>


Wave Speed

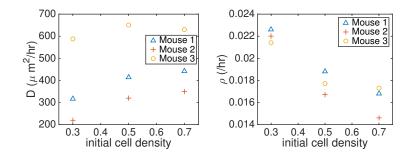
Recall for reaction-diffusion equation, the minimum wave speed is $c_{\min} = 2\sqrt{D\rho}$. Examining the wave speeds for our simulations:


Estimated wave speeds for various tumor volumes. Mouse 1: triangles; Mouse 2 plusses; Mouse 3 circles.

When we examine Hypothesis 2 only (shown in blue), we see no clear correlation between tumor volume and wave speed:


Estimated wave speeds for various tumor volumes under Hypothesis 2. Mouse 1: triangles; Mouse 2 plusses; Mouse 3 circles.

When we examine Hypothesis 3 only (shown in red), we see correlation between tumor volume and wave speed


Estimated wave speeds for various tumor volumes under Hypothesis 3. Mouse 1: triangles; Mouse 2 plusses; Mouse 3 circles.

Mouse 1 and 2 have wave speeds within 5% of one another for all initial conditions, Mouse 3 22%

Initial Condition

Mouse 1 and 2 and 3 have wave speeds within 8% of one another for all initial conditions

- Generated uniform grid from actual MR images
- Used 3D finite difference code to fit simulated tumor to actual tumor
- Tested hypotheses as to why the final tumor sizes are so different
- Measured wave speeds which match other rat and human experimental data

Co-Author Acknowledgement and Thanks

- From the SoMSS Dept:
 - Dr. Yang Kuang
 - Dr. Eric Kostelich
 - Dr. Tracy Stepien
 - Barrett Anderies
- From IPA Lab:
 - Dr. David Frakes
 - Jon Plasencia
- From Barrow Neurological Institute
 - Dr. Mark Preul
 - Dr. Adrienne Scheck
 - Dr. Eric Woolf
 - Qingwei Liu
 - Gregory Turner

ヨト イヨト

- Confidence of parameter estimations
- Can we predict a future MRI?
- Incorporating more complexity into the model
- Use more realistic diffusion (Diffusion Tensor Imaging)
- Use histology to quantify relationship between visible tumor on MR image and carrying capacity/tumor density
- Incorporate more realistic brain structure mass effect via finite element method