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Introduction and Biological Background

Glioblastoma Multiforme is a deadly primary brain tumor
Exhibits both strong proliferation and low density migration
Mathematically modeled assuming 2 separate sub-populations and
thus 2 sub-equations

Research Questions
How can we be sure there are only 2 subpopulations?
Are we able to recover probability densities independently?
Can we recover probability densities without assuming anything
about the cdf?

Mathematical Model

∂c(t, x,DDD,ρρρ)

∂t
= ∇ · (DDD∇c(t, x,DDD,ρρρ)) + ρρρc(t, x,DDD,ρρρ)(1− c(t, x,DDD,ρρρ))

where
c(t, x,DDD,ρρρ) is tumor cell population at time t and spatial location x
for a subpopulation of the tumor which exhibits growth rate ρρρ and
diffusion DDD
DDD and ρρρ are random variables defined on the compact probability
space Ω = ΩDDD × Ωρρρ

Tumor cell population is given by

c(t, x) = E [c(t, x, ·, ·), P ] =

∫
Ω

c(t, x,DDD,ρρρ)dP (DDD,ρρρ)

P (DDD,ρρρ) is the distributions of the parameters
c(t, x) is aggregate cell population at time t and location x

Inverse Problem
Estimate the probability measure P (DDD,ρρρ) using synthetic data vji, rep-
resenting total populations at time tj and spatial location xi using M
nodes:

Discrete Approximations

P̂ = argmin
R

∑
j,i

vji −
∑

l,k

c(tj, xi;Dl, ρk)w
MD

l w
Mρ

k

2

under the assumption
MD∑
l=1

wl
MD = 1 and

Mρ∑
k=1

wk
Mρ = 1.

Spline Approximations

P̂ = argmin
R

∑
i,j

[
vij −

∑
l

al

∫
Ωρ

(∑
k

bk

∫
ΩD

c(tj, xi;DDD,ρρρ)sl(DDD)dD

)
sk(ρρρ)dρ

]2

with
MD∑
l=1

al
∫

ΩD
sl(DDD)dD = 1 and

Mρ∑
k=1

bk
∫

Ωρ
sk(ρρρ)dρ = 1

Inverse Problem
Discrete Approximations Spline Approximations

Choosing Probability Grid Use the Akaike Information Criteria
(AIC):

AIC = Nν ln

(
RSS

Nν

)
+ Nν(1 + ln(2π)) + 2(M + 1)

where
N is the total number of data points
ν is the number of observables
RSS is the residual sum of squares error
M is the number of parameters being estimated (i.e., number
of nodes)

Results
We using synthetic data generated with bigaussian diffusion and
normal ρ (left) and bigaussian ρ and normal diffusion (right).
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Solutions of the ‘best-fit’ model using discrete (blue) and spline (red) approxi-
mations with exact solution (black).

Based on the above fits, recovered parameter distributions are
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The pdf comparisons for the actual distribution (black), the spline approxima-
tion (red) and the discrete approximation (blue).

Results
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The cdf comparisons for the actual distribution (black), the spline approxi-
mation (red) and the discrete approximation (blue).

Treatment Predictions
We consider chemotherapy administered as a modified log-
kill hypothesis:

∂c(t, x)

∂t
= DDD

∂2c(t, x)

∂x2
+ ρρρc(t, x)(1− c(t, x))− rρ

ρρ

ρ̄
c(t, x)

where r represents the strength of chemotherapy.
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The estimated tumor burden versus time after initiating treatment. In this
case, reaction-diffusion model vastly overestimates efficacy of treatment

Conclusions and Further Directions
Conclusions

Able to accurately recover probability distributions of pa-
rameters from synthetic data up to 5% proportional errors
Assuming tumor homogeneity may result in overestimat-
ing efficacy of treatment

Further Directions
Structural and practical parameter identifiability
Uncertainty quantification/sensitivity analysis
Adaptive meshing of probability nodes
Test with in vitro data
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