Global Dynamics of a Model of Joint Hormone Treatment with Dendritic Cell Vaccine for Prostate Cancer

Erica M. Rutter and Yang Kuang

Mathematical Biology Seminar
January 22, 2016
1 Biological Introduction to Prostate Cancer and Immunotherapy

2 Previous Models

3 Our Model

4 Simulation Results

5 Theoretical Results

6 Conclusions and Further Directions
Introduction: Prostate Cancer Statistics

- In the US, prostate cancer is the most common non-skin cancer in men and the second most fatal.
- The estimated probability of developing prostate cancer for men in a lifetime is 1 in 6.

Estimated New Cases

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>220,800</td>
<td>26%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>115,610</td>
<td>14%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>69,090</td>
<td>8%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>56,320</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>42,670</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>39,850</td>
<td>5%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>38,270</td>
<td>5%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>32,670</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>30,900</td>
<td>4%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>25,510</td>
<td>3%</td>
</tr>
<tr>
<td>All Sites</td>
<td>848,200</td>
<td>100%</td>
</tr>
</tbody>
</table>

Estimated Deaths

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>86,380</td>
<td>26%</td>
</tr>
<tr>
<td>Prostate</td>
<td>27,540</td>
<td>9%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>26,100</td>
<td>8%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>20,710</td>
<td>7%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>17,030</td>
<td>5%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>14,210</td>
<td>5%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>12,600</td>
<td>4%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>11,510</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>11,480</td>
<td>4%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>9,070</td>
<td>3%</td>
</tr>
<tr>
<td>All Sites</td>
<td>312,150</td>
<td>100%</td>
</tr>
</tbody>
</table>

NCI www.cancer.gov
Treatment Options

- Screening/Diagnosis: prostate specific antigen (PSA) levels
- Local Treatment: active surveillance, surgery (radical prostatectomy), radiation therapy
- Advanced, Relapsed: hormone therapy/androgen suppression therapy
 - Orchiectomy (removal of the testes)
 - Luteinising hormone-releasing hormone (LHRH) agonists
 - Anti-androgens
 - Total androgen blockade
 - Intermittent Androgen Suppression Therapy (IAS)
- Castration Resistant: chemotherapy (Docetaxel, Capazitaxel), cancer vaccine (Sipuleucel-T), Denosumab (if spread to bone)
Androgens: the male sex hormones

- Androgens are produced in the testes and adrenal gland
- Testosterone circulates in the blood
- Free testosterone enters the prostate cells and 90% is converted to DHT by 5α reductase enzyme
- DHT binds to the androgen receptor (AR)
- Causes growth, survival, and production of prostate-specific antigen (PSA)
- PSA is a marker for prostate cancer

Feldman and Feldman 2001

E. M. Rutter and Y. Kuang

Immunotherapy Treatment Model For Prostate Cancer
Androgen Suppression Therapy

- Both normal and cancerous prostate cells depend on androgens for growth and survival.
- Androgen suppression therapy decreases these androgens, either by castration or the use of drugs.
- Primary response rate of about 80%-90%.
- Most advance to a castration-resistant prostate cancer (CRPC).
- Side effects include:
 - Loss of libido
 - Erectile dysfunction
 - Loss of testicular mass and penile length
 - Breast growth
 - Increased body fat
 - Loss of muscle mass
 - Osteoporosis
 - Anemia
 - Cognitive dysfunction
 - Depression
 - Fatigue
 - Hot flashes

Intermittent androgen suppression therapy (IAS) improves quality of life, reduces side effects and therapy costs.
Immunotherapy uses the body's own immune system to fight cancer.

- **Non-specific antibodies** boost immune system response:
 - Can be suppressive or boosting
 - Cytokines such as Interleukin-2 can be injected to help immune system cells grow and divide
 - Unpleasant flu-like side effects and possible fatal heart conditions

- **Synthetic antibodies**
 - Lab-designed antibodies specifically target antigens found on cancer cells
 - Which antigen to attack?

- **Train system to attack specific cancer cells**
 - Targeted therapies which use the patient’s specific tumor to induce a response
T cells drive cell-mediated immunity

Many types of T cells:

- Helper (matures B cells and activates cytotoxic T cells),
- Cytotoxic (attacks virus-infected cells and tumor cells and recognizes their target by binding to antigens on cell surfaces),
- Memory (remain after infections have gone away in case they are needed again), etc
- Regulatory (stop T-cell production as the disease ends, suppresses autoreactive T cells)
Cytokines are small proteins that effect cell signaling.

Produced by immune cells such as macrophages, T cells, B cells and are released to influence other cells.

Can be chemokines (chemotaxis), interferon (viral replication, activate immune cells), interleukins (promote development and differentiation of T and B cells), and other types.

Regulate maturation, growth, death of cell populations.

Different types of cytokines interact with each other, keeping body in homeostasis.

Many have adverse side effects and can be fatal in large doses.
IL-2 is a cytokine (interleukin)

- Directly promotes differentiation of immature T cells into regulatory T cells, preventing attack on healthy cells
- Promotes differentiation of T cells into effector T cells and memory T cells
- Dangerous side effects if dosage too high: seizure, heart complications, breathing problems

Dendritic Cells

- Most potent of the antigen-presenting cells
- Ingest antigens while immature in blood
- Once activated, DC’s migrate to lymph nodes to interact with T and B cells
- Present the antigen material on cell surface to naive and memory T-cells
- Secrete costimulatory signals

Dendritic cell vaccines

1. Blood is extracted from patient and monocytes are differentiated into DCs.
2. DCs loaded with tumor derived antigens:
 - proteins from autologous tumor lysate
 - electroplated with tumor-derived mRNA
 - if autologous tumor unavailable, loaded
3. Activate DCs with cytokines
4. Tumor antigen-presenting DC is reinjected into patient

DC Vaccines

- For prostate cancer, target antigen is Prostatic acid phosphatase (PAP)
 - PAP is an enzyme produced by prostate and is elevated in prostate cancer patients (used to be biomarker of the disease)
 - Highest levels of PAP are found in patients for whom cancer has metastasized
- Sipuleucel-T (Provenge) currently only approved DC treatment for prostate cancer
- DC vaccines tend to be safe with mild limited side effects (flu-like symptoms)
- DC vaccine efficacy is mitigated by radiation and chemotherapy
- Used for advanced prostate cancer that is no longer helped by hormone therapy (AI)
- Current trials to examine DC vaccines for prostate cancer which is not yet castration resistant
1 Biological Introduction to Prostate Cancer and Immunotherapy

2 Previous Models

3 Our Model

4 Simulation Results

5 Theoretical Results

6 Conclusions and Further Directions

- Presents a mathematical model to describe and compare prostate tumor growth under IAS and CAS therapy
- Consider AD (X_1) and AI (X_2) cell populations with androgen concentration (A) dependent proliferation and apoptotic rates

$$\frac{dX_1}{dt} = \alpha_1 p_1(A)X_1 - m(A)X_1 - \beta_1 q_1(A)X_1$$

(proliferation, mutation to AI, apoptosis)

$$\frac{dX_2}{dt} = \alpha_2 p_2(A)X_2 + m(A)X_1 - \beta_2 q_2(A)X_2$$

(proliferation, mutation from AD, apoptosis)

$$\frac{dA}{dt} = \gamma(a_0 - A) - \gamma a_0 u(t)$$

(homeostasis of androgen, depletion of androgen if on therapy)

- note that $u(t)$ is either 0 (if treatment off), or 1 (if treatment on)
- $p_1(A), q_1(A), p_2(A), q_2(A)$ are from Jackson paper

- Presents a mathematical model to describe tumor/immune interaction
- Considers tumor cells (X), activated immune cells, such as T cells (T), and cytokine IL-2 (I_L)

\[
\begin{align*}
\frac{dX}{dt} &= r_2(X)X - \frac{aTX}{g_2 + X} \\
&\quad \text{growth and death} \\
&\quad \text{death by T cell} \\
\frac{dT}{dt} &= cX - \mu T + \frac{p_1 T I_L}{g_1 + I_L} + s_1 \\
&\quad \text{recruitment due to tumor} \\
&\quad \text{death} \\
&\quad \text{activation by cytokines} \\
&\quad \text{injected therapies} \\
\frac{dI_L}{dt} &= \frac{p_2 XT}{g_3 + X} - \omega I_L + s_2 \\
&\quad \text{secretion} \\
&\quad \text{degradation} \\
&\quad \text{external injection}
\end{align*}
\]
Previous Mathematical Models - IAD + Immunotherapy: Portz et al. (2012) [8]

Marries Ideta et al. and Kirschner and Panetta models:

AD cells: \[\frac{dX_1}{dt} = r_1(A)X_1 - m(A)X_1 - \frac{e_1X_1 T}{g_1 + X_1} \]
- growth and death
- mutation to AI
- death by T cell

AI cells: \[\frac{dX_2}{dt} = r_2X_2 + m(A)X_1 - \frac{e_1X_2 T}{g_1 + X_2} \]
- growth and death
- mutation from AD
- death by T cell

T cells: \[\frac{dT}{dt} = \frac{e_2D}{g_2 + D} - \mu T + \frac{e_3TL}{g_3 + l_L} \]
- activation of T cell by DC
- death
- activation of T cell by cytokines

IL-2 conc: \[\frac{dl_L}{dt} = \frac{e_4 T(X_1 + X_2)}{g_4 + X_1 + X_2} - \omega_l_l \]
- secretion
- degradation

Androgen conc: \[\frac{dA}{dt} = \gamma(a_0 - A) - \gamma a_0 u(t) \]
- homeostasis of androgen
- depletion of androgen if on therapy

DC cells: \[\frac{dD}{dt} = -cD \]
- death
Motivating Modeling Questions

- What effect does timing and amount of dosage have on cancer dynamics?
- Why is it assumed that the mutation only goes from AD to AI?
- Do results hold with more realistic (and general) T-cell and tumor cell interactions?
- Can we mathematically analyze this system and find conditions for global stability?
1 Biological Introduction to Prostate Cancer and Immunotherapy
2 Previous Models
3 Our Model
4 Simulation Results
5 Theoretical Results
6 Conclusions and Further Directions
Our Model

AD cells: \[\frac{dX_1}{dt} = r_1(A, X_1, X_2)X_1 - m(A)X_1 + m_2(A)X_2 - X_1 f_1(X_1, X_2, T) \]
- growth and death
- mutation to AI
- mutation from AI
- death by T cell

Al cells: \[\frac{dX_2}{dt} = r_2(X_1, X_2) + m(A)X_1 - m_2(A)X_2 - X_2 f_2(X_1, X_2, T) \]
- growth and death
- mutation from AD
- mutation to AD
- death by T cell

T cells: \[\frac{dT}{dt} = \frac{e_2 D}{g_2 + D} - \mu T + f_3(X_1, X_2, T) \]
- activation of T cell by DC
- death
- activation of T cell by cytokines

IL-2 conc: \[\frac{dI_L}{dt} = Tf_4(X_1, X_2) - \omega I_L \]
- secretion
- degradation

Androgen conc: \[\frac{dA}{dt} = \gamma(a_0 - A) - \gamma a_0 u(t) \]
- homeostasis of androgen
- depletion of androgen if on therapy

DC cells: \[\frac{dD}{dt} = -cD \]
- death

E. M. Rutter and Y. Kuang
Immunotherapy Treatment Model For Prostate Cancer
With growth and mutation functions:

- \(r_1(A, X_1, X_2) = r_1 A X_1 \left(1 - \frac{X_1 + X_2}{K} \right) - d_1(a_0 - A) \)

- \(r_2(X_1, X_2) = r_2 X_2 \left(1 - \frac{X_1 + X_2}{K} \right) \)

- \(m(A) = m_1(1 - \frac{A}{a_0}) \)

- \(m_2(A) = m_2(\frac{A}{A+k_4}) \)

and on/off treatment switch as:

\[
 u(t) = \begin{cases}
 0 \rightarrow 1 & \text{if } y(t) > L_1 \text{ and } \frac{dy}{dt} > 0 \\
 1 \rightarrow 0 & \text{if } y(t) < L_0 \text{ and } \frac{dy}{dt} < 0
\end{cases}
\]

where \(y \) represents serum PSA levels:

\(y(t) = c_1 X_1 + c_2 X_2 \)
Imposed conditions on $f_i(X_1, X_2, T)$:

- $f_i(X_1, X_2, T) \geq 0 \quad \forall \quad X_1, X_2, T \geq 0$
- $f_1(X_1, X_2, 0) = f_2(X_1, X_2, 0) = 0 \quad \forall \quad X_1, X_2 \geq 0$
- $f_3(0, T) = 0 \quad \forall \quad T \geq 0$
- $f_4(0, 0) = 0 \quad \forall \quad T \geq 0$
- $\frac{\partial f_1}{\partial X_1} \leq 0$
- $\frac{\partial f_2}{\partial X_2} \leq 0$
- $\frac{\partial f_1}{\partial T} \geq 0$
- $\frac{\partial f_2}{\partial T} \geq 0$
- $\frac{\partial f_3}{\partial I_L} \geq 0$
- $\frac{\partial f_4}{\partial X_i} \geq 0$
Our Mathematical Model

- Based on the Portz et. al model, which marries the Ideta et. al model with the Kirschner and Panetta model
- AI is too strong – the cancer cells are not independent of androgen, but just less sensitive to lower levels of androgen
- Consider allowing AI cells to mutate back into AD cells when in an androgen-rich environment
- AI cells are able to survive in an androgen-depleted environment, but when there are 'normal' androgen levels, they use the androgen to grow
- We also consider death by T-cells on the entire cancer population, as opposed to each cancer independently
Biological and Mathematical Questions

Biological Questions
- How does timing the DC vaccine dose effect time to AI cell growth?
- Can DC vaccines be effective in treating cancers which are not AI?
- Are DC vaccines more or less effective with CAS vs IAS?

Mathematical Questions
- Can we determine optimal dosing quantities to stabilize or eradicate the disease?
- Can we determine mathematically the steady-state behavior and translate that back into biological meaning?
The functions we propose for simulation results are

- \(f_1(X_1, X_2, T) = \frac{e_1 T}{g_1 + X_1 + X_2} \)
- \(f_2(X_1, X_2, T) = \frac{e_1 T}{g_1 + X_1 + X_2} \)
- \(f_3(X_1, X_2, T) = \frac{e_3 T I_L}{g_3 + I_L} \)
- \(f_4(X_1, X_2) = \frac{e_4 (X_1 + X_2)}{g_4 + X_1 + X_2} \)

and they satisfy the previous conditions.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Biological Meaning</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>AD cell proliferation rate</td>
<td>0.025/day</td>
<td>[1]</td>
</tr>
<tr>
<td>β_1</td>
<td>AD cell death rate</td>
<td>0.008/day</td>
<td>[1]</td>
</tr>
<tr>
<td>k_1</td>
<td>AD cell proliferation rate dependence on androgen</td>
<td>2ng/ml</td>
<td>[5]</td>
</tr>
<tr>
<td>k_2</td>
<td>low androgen level effect on AD cell death rate</td>
<td>8</td>
<td>[2]</td>
</tr>
<tr>
<td>k_3</td>
<td>AD cell death rate dependence on androgen</td>
<td>0.5ng/ml</td>
<td>[5]</td>
</tr>
<tr>
<td>k_4</td>
<td>AI to AD mutation half-saturation</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>r_2</td>
<td>AI net cell growth rate</td>
<td>0.006/day</td>
<td>[1]</td>
</tr>
<tr>
<td>m_1</td>
<td>maximum mutation rate from AD to AI</td>
<td>0.00005/day</td>
<td>[5]</td>
</tr>
<tr>
<td>m_2</td>
<td>maximum mutation rate from AI to AD</td>
<td>0.00015/day</td>
<td>[9]</td>
</tr>
<tr>
<td>a_0</td>
<td>base level androgen concentration</td>
<td>30 ng/ml</td>
<td>[5]</td>
</tr>
<tr>
<td>γ</td>
<td>androgen clearance and production rate</td>
<td>0.08/day</td>
<td>[5]</td>
</tr>
<tr>
<td>ω</td>
<td>cytokine clearance rate</td>
<td>10/day</td>
<td>[10]</td>
</tr>
<tr>
<td>μ</td>
<td>T cell death rate</td>
<td>0.03/day</td>
<td>[3]</td>
</tr>
<tr>
<td>c</td>
<td>dendritic cell death rate</td>
<td>0.14/day</td>
<td>[7]</td>
</tr>
<tr>
<td>e_1</td>
<td>maximum rate T cells kill cancer cells</td>
<td>10 x 10^9 cells</td>
<td>[3]</td>
</tr>
<tr>
<td>g_1</td>
<td>cancer cell saturation level form T cell kill rate</td>
<td>20 x 10^6 cells</td>
<td>[3]</td>
</tr>
<tr>
<td>e_2</td>
<td>T cell maximum activation rate</td>
<td>20 x 10^6 cells/day</td>
<td>[3]</td>
</tr>
<tr>
<td>g_2</td>
<td>DC saturation level for T cell activation</td>
<td>400 x 10^6 cells</td>
<td>[11]</td>
</tr>
<tr>
<td>e_3</td>
<td>maximum clonal expansion rate</td>
<td>0.1245/day</td>
<td>[3]</td>
</tr>
<tr>
<td>g_3</td>
<td>IL-2 saturation level for T cell clonal expansion</td>
<td>1000 ng/ml</td>
<td>[3]</td>
</tr>
<tr>
<td>e_4</td>
<td>maximum rate T cells produce IL-2</td>
<td>5 x 10^{-6} ng/ml/cell/day</td>
<td>[3]</td>
</tr>
<tr>
<td>g_4</td>
<td>cancer cell saturation level for T cell stimulation</td>
<td>10 x 10^9 cells</td>
<td>[3]</td>
</tr>
<tr>
<td>D_1</td>
<td>DC vaccine dosage</td>
<td>300 x 10^6 cells</td>
<td>[11]</td>
</tr>
<tr>
<td>c_1</td>
<td>AD cell PSA level correlation</td>
<td>1 x 10^{-9} ng/ml/cell</td>
<td>[5]</td>
</tr>
<tr>
<td>c_2</td>
<td>AI cell PSA level correlation</td>
<td>1 x 10^{-9} ng/ml/cell</td>
<td>[5]</td>
</tr>
</tbody>
</table>
Vaccine Timing Results

- Keep total dosage of vaccine constant
- Vary how often dendritic cell vaccine is administered

More frequent injections delay androgen independent relapse
- e_1 represents maximum rate T cells kill cancer cells, may be personalized parameter
- numerically investigate minimal e_1 value to prevent relapse (stable cyclical disease).

- More frequent injections can assist weaker immune systems
Increasing frequency of injection staves off relapse – take this idea to the limit

Assume continual injection v (as through an IV drip)

$$\frac{dD}{dt} = \underbrace{v}_{\text{injection}} - \underbrace{cD}_{\text{death}}$$
Varying e_1

- set injection rate $\nu = 0.04$ billion cells

- varying e_1:
 - if $e_1 < 0.25$ androgen independent relapse
 - if $0.25 < e_1 < 0.75$ stable disease state (increasing e_1 elongates cycles)
 - If $e_1 > 0.75$ disease eradicated
Bifurcation of e_1

- For $e_1 = 0$, disease free equilibrium unstable
- For $e_1 \in (0.2, 0.65)$, stable limit cycles of disease
- For $e_1 > 0.65$ stability of disease free equilibrium
Analysis of Continuous Model

\[\frac{dX_1}{dt} = r_1(A, X_1, X_2)X_1 - m(A)X_1 + m_2(A)X_2 - X_1f_1(X_1, X_2, T) \]
\[\frac{dX_2}{dt} = r_2(X_1, X_2)X_2 + m(A)X_1 - m_2(A)X_2 - X_2f_2(X_1, X_2, T) \]
\[\frac{dT}{dt} = \frac{e_2 D}{g_2 + D} - \mu T + Tf_3(l_L, T) \]
\[\frac{dI_L}{dt} = Tf_4(X_1, X_2) - \omega I_L \]
\[\frac{dA}{dt} = -\gamma A \]
\[\frac{dD}{dt} = \nu - cD \]

Theorem

Solutions system above with positive initial conditions remain positive for all time
Theorem

The disease-free equilibrium $E_0^* = (0, 0, \frac{e_1 v}{\mu(cg_2 + v)}, 0, 0, \frac{v}{c})$ and is unstable if $e_1 \leq \frac{g_1 r_2}{T^*}$, and locally asymptotically stable if $e_1 > \frac{g_1 r_2}{T^*}$.

- If $e_1 \leq \frac{g_1 r_2}{T^*}$, only $E_0^* = (0, 0, \frac{e_2 v}{\mu(cg_2 + v)}, 0, 0, \frac{v}{c})$ exists (disease eradication).
- $e_1 > \frac{g_1 r_2}{T^*}$ also have $E_1^* = (0, X_2^*, T^*, I_L^*, 0, \frac{v}{c})$ (AI relapse)
Jacobian for E_0^*

$$
\begin{pmatrix}
-d_1a_0 - m_1 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)} & 0 & 0 & 0 & 0 & 0 \\
m_1 & r_2 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)} & 0 & 0 & 0 & 0 \\
0 & 0 & -\mu & \frac{e_3 e_2 v}{g_3 \mu (cg_2 + v)} & 0 & \frac{e_2}{g_2} \\
\frac{e_4 e_2 v}{(g_4 \mu (cg_2 + v))} & \frac{e_4 e_2 v}{(g_4 \mu (cg_2 + v))} & 0 & -\omega & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\gamma \\
0 & 0 & 0 & 0 & 0 & 0 & -c \\
\end{pmatrix}
$$

$$
\lambda = (-d_1a_0 - m_1 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)}, r_2 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)}, -\mu, -\omega, -\gamma, -c)
$$

$$
\lambda_2 = r_2 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)} \text{ determines stability}
$$

$$
r_2 - \frac{e_1 e_2 v}{g_1 \mu (cg_2 + v)} \leq 0 \Leftrightarrow e_1 \leq \frac{g_1 r_2}{T^*}
$$
We cannot control parameters e_1, e_2, g_1, c, μ, or g_2, some are personalized parameters.

We can control dosage, ν

$e_1 \leq \frac{g_1 r_2}{T^*} \iff \nu > \frac{c g_2 g_1 r_2 \mu}{e_1 e_2 - g_1 r_2 \mu}$

ν_{crit} is minimal dosage to eradicate cancer.

If able to measure other parameters individually, can set proper dosage.
Outline

1 Biological Introduction to Prostate Cancer and Immunotherapy
2 Previous Models
3 Our Model
4 Simulation Results
5 Theoretical Results
6 Conclusions and Further Directions
Assume androgen deprivation therapy is constantly on

\[u(t) = 1 \]

\[\frac{dA}{dt} = \gamma(a_0 - A) - \gamma a_0 u(t) \Rightarrow \frac{dA}{dt} = -\gamma A \]

Note cytokines \((I_L)\), androgen \((A)\), dendritic cells \((D)\) operate on faster time scale

Let these variables go to steady state

\[I_L = \frac{Tf_4(X_1 + X_2)}{\omega} \]
\[A = 0 \]
\[D = \frac{v}{c} \]

System reduces to:

\[\frac{dX_1}{dt} = -d_1 a_0 X_1 - m_1 X_1 - X_1 f_1(X_1, X_2, T) \]
\[\frac{dX_2}{dt} = r_2 X_2 \left(1 - \frac{X_1 + X_2}{K}\right) + m_1 X_1 - X_2 f_2(X_1, X_2, T) \]
\[\frac{dT}{dt} = \frac{e_2 D}{g_2 + D} - \mu T + Tf_3(I_L, T) \]
Further Reduction of System

\[
\frac{dX_1}{dt} = X_1 \left[-d_1 a_0 - m_1 - f_1(X_1, X_2, T) \right] \\
\leq X_1 \left[-\beta_1 k_2 - m_1 \right] \\
\leq -aX_1
\]

It is apparent \(X_1 \) that \(\lim_{t \to \infty} X_1(t) = 0 \), so can further reduce system to:

\[
\frac{dX_2}{dt} = r_2 X_2 \left(1 - \frac{X_2}{K} \right) - X_2 f_2(0, X_2, T) \\
\frac{dT}{dt} = \frac{e_2 D}{g_2 + D} - \mu T + T f_3(I_L, T) \quad (1)
\]

The end behaviors of this system and the previous system are asymptotically equivalent [13]
Lost Dynamics from System Reduction

Representative diagrams for various values of e_1. We can see that disease dynamics are similar in the reduced case to the full case.
The disease-free steady state of the reduced system (1) is globally asymptotically stable under the following conditions:

i) \(\mu > f_3(I_L, T) \)

ii) \(\frac{\partial}{\partial X_2} f_2(X_2, T) \geq -\frac{r}{K} \)

iii) \(r_2 < f_2(0, T) \)

iv) \(\frac{\mu^2(g_2+D)}{e_2D} > \frac{\partial}{\partial T} f_3(0, T^*) \)

In order to prove this theorem with simplicity, we break the proof into several propositions:

1. Positivity and boundedness
2. Local asymptotic stability
3. Global asymptotic stability
Proposition

If $\mu > f_3(I_L, T)$ (condition i) then solutions of the reduced system remain positive and bounded.

Positivity:

- **T**: In order for $T(t) < 0$ for some t, we would require that $\frac{dT}{dt} < 0$ when $T = 0$. However, $\frac{dT}{dt} \big|_{T=0} = \frac{e_2D}{g_2+D} > 0$

- **X_2** (proof by contradiction):
 - there must exist some t_1 such that $X_2(t) > 0 \forall t \in [0, t_1)$ and $X_2(t_1) = 0$
 - $\frac{dX_2}{dt} \geq r_2 X_2 \forall t \in [0, t_1]$
 - $X_2 \geq X_2(0)e^{r_2 t}$, and as such $X_2(t_1) \geq X_2(0)e^{r_2 t_1} \geq 0$
Boundedness:

- T:

\[
\frac{dT}{dt} = \frac{e_2 D}{g_2 + D} + T(f_3(I_L, T) - \mu) \\
\leq c - \bar{g} T
\]

(2)

where $\bar{g} = \min[\mu - f_3(I_L, T)] > 0$ by assumption.

- X_2: Bounded above by K
Local Asymptotic Stability

Proposition

Under the assumption ii, the limiting system contains two equilibria: the disease-free equilibrium and a negative equilibrium. The disease-free equilibrium is locally asymptotically stable under condition iii and condition iv.

Equilibria:

- \[
 \frac{dX_2}{dt} = r_2X_2 \left(1 - \frac{X_2}{K}\right) - X_2f_2(X_2, T) = 0:
 \]
 - \(X_2^* = 0\)
 - \(f_2(X_2^*, T^*) = r_2 \left(1 - \frac{X_2^*}{K}\right)\)

- \[
 \frac{dT}{dt} = \frac{e_2D}{g_2+D} - \mu T + Tf_3(0, X_2, T) = 0:
 \]
 - \(T^* = \frac{e_2D}{(g_2+D)(\mu-f_3(0,X_2,T))}\).

We get \(E_0^* = (0, T^*)\) and \(E_1^* = (X_2^*, T^*)\), which is not biologically relevant by our assumption.
Local Asymptotic Stability

The local stability of the disease-free steady state E_0^* is exhibited in the Jacobian:

$$
\begin{pmatrix}
 r_2 - f_2(0, T^*) & 0 \\
 T^* \frac{\partial}{\partial X_2} f_3(0, T^*) & -\mu + T^* \frac{\partial}{\partial T} f_3(0, T^*)
\end{pmatrix}
$$

and the eigenvalues are given by:

- $\lambda_1 = r_2 - f_2(0, T^*) < 0$ (condition iii)
- $\lambda_2 = -\mu + T^* \frac{\partial}{\partial T} f_3(0, T^*) < 0$, (condition iv)

so we have local asymptotic stability.
We are now ready to prove global asymptotic stability

- Solutions are positive and bounded
- No limit cycles since we have boundary equilibrium only

By Poincare-Bendixson, all solutions tend towards E_0^*, so the disease-free steady state is globally asymptotical stable.
What do these conditions mean biologically?

i) \(\mu > f_3(I_L, T) \) : the death of T cells is greater than the activation of T by the cytokines

ii) \(\frac{\partial}{\partial X_2} f_2(X_2, T) \geq -\frac{r}{K} \) : killing function more responsive than growth

iii) \(r_2 < f_2(0, T) \) : the growth rate of the AI cancer cells is smaller than the death due to T cells

iii) \(\frac{\mu^2(g_2+D)}{e_2D} > \frac{\partial}{\partial T} f_3(0, T^*) \) : unsure

These biological conditions are very strong, and quite unlikely. The growth rate of cancer cells tends to be extremely large, so these assumptions may not be applicable in actual clinical setting.

What about stable disease steady state?
Theorem

The diseased steady state of (1) is globally asymptotically stable under the following conditions:

i) \(\mu > f_3(I_L, T) \)

ii) \(\exists X_2^*, T^* \geq 0 \text{ such that } f_2(X_2^*, T^*) = r_2 \left(1 - \frac{X_2^*}{K} \right) \)

iii) \(r_2 > f_2(0, T^*) \)

iv) \(\mu - f_3(I_L, T) > -X_2 \frac{\partial}{\partial X_2} f_2(X, T) + T \frac{\partial}{\partial T} f_3(I_L, T) - \frac{r_2 X_2}{K} \forall X_2, T \geq 0 \)

v) \[
\left(-\frac{r_2 X_2^*}{K} - X_2^* \frac{\partial}{\partial X_2} f_2(X_2^*, T^*) \right) \left(-\mu + f_3(I_L^*, T^*) + T^* \frac{\partial}{\partial T} f_3(I_L^*, T^*) \right) + \\
\left(X_2^* \frac{\partial}{\partial T} f_2(X_2^*, T^*) T^* \frac{\partial}{\partial X_2} f_3(I_L^*, T^*) \right) > 0
\]
Proof of Global Stability

In order to prove this theorem with simplicity, we break the proof into several propositions:

1. Positivity and boundedness (condition i) Proof similar to previous
2. Local asymptotic stability (condition ii-v)
3. Dulac Criteria
4. Global asymptotic stability
Local Asymptotic Stability of E_0^*

Proposition

The limiting system (1) contains two equilibria: the disease-free equilibrium, E_0^*, and a secondary equilibrium, E_1^*. The secondary equilibrium is positive (assuming condition ii)) and is locally asymptotically stable if conditions iii)-v) from the theorem are satisfied.

The local stability of the disease-free steady state E_0^* is exhibited in the Jacobian:

$$
\begin{pmatrix}
 r_2 - f_2(0, T^*) & 0 \\
 T^* \frac{\partial}{\partial T} f_3(0, T^*) & -\mu + T^* \frac{\partial}{\partial T} f_3(0, T^*)
\end{pmatrix}
$$

and the eigenvalues are given by:

- $\lambda_1 = r_2 - f_2(0, T^*) > 0$ by condition iii)
- $\lambda_2 = -\mu + T^* \frac{\partial}{\partial T} f_3(0, T^*) < 0$, by condition iv).
Local Asymptotic Stability of E_1^*

The local stability of the diseased steady state E_1^* is exhibited in the Jacobian:

$$
\begin{pmatrix}
- \frac{r_2X_2^*}{K} - X_2^* \frac{\partial}{\partial X_2} f_2(X_2^*, T^*) & -X_2^* \frac{\partial}{\partial T} f_2(X_2^*, T^*) \\
T^* \frac{\partial}{\partial X_2} f_3(I_L^*, T^*) & -\mu + T^* \frac{\partial}{\partial T} f_3(I_L^*, T^*) + f_3(I_L^*, T^*)
\end{pmatrix}
$$

Thus, the trace is given by (and < 0 by condition iv)

$$
\tau = - \frac{r_2X_2^*}{K} - X_2^* \frac{\partial}{\partial X_2} f_2(X_2^*, T^*) - \mu + T^* \frac{\partial}{\partial T} f_3(I_L^*, T^*) + f_3(I_L^*, T^*)
$$

(3)

and the determinant is given by (and > 0 by condition v)

$$
\Delta = \left(- \frac{r_2X_2^*}{K} - X_2^* \frac{\partial}{\partial X_2} f_2(X_2^*, T^*) \right) \left(-\mu + f_3(I_L^*, T^*) + T^* \frac{\partial}{\partial T} f_3(I_L^*, T^*) \right) + \left(X_2^* \frac{\partial}{\partial T} f_2(X_2^*, T^*) T^* \frac{\partial}{\partial X_2} f_3(I_L^*, T^*) \right)
$$

In order for E_1^* to be stable we require $\tau < 0$, $\Delta > 0$: $\tau < 0$ is given by assuming condition iv), and $\Delta > 0$ is given by assuming condition v). Therefore, E_1^* is locally asymptotically stable.
Proposition

The limiting system (1) has no limit cycles as long as condition iv) is satisfied.

We will be using the Dulac criterion to establish that there are no periodic orbits within. Using \(h(X_2, T) = \frac{1}{X_2} \), we can see that

\[
\Delta = \frac{\partial}{\partial X_2} \left[\frac{1}{X_2} \left(r_2 X_2 \left(1 - \frac{X_2}{K} \right) - X_2 f_2(X_2, T) \right) \right] \\
+ \frac{\partial}{\partial T} \left[\frac{1}{X_2} \left(\frac{e_2 D}{g_2 + D} - \mu T + T f_3(I_L, T) \right) \right] \\
= \frac{\partial}{\partial X_2} \left[r_2 - \frac{r_2 X_2}{K} - f_2(X_2, T) \right] + \frac{\partial}{\partial T} \left[\frac{e_2 D}{X_2(g_2 + D)} - \mu T \right] + \frac{T}{X_2} \frac{\partial}{\partial T} f_3(I_L, T) \\
= - \frac{r_2}{K} - \frac{\partial}{\partial X_2} f_2(X_2, T) - \frac{\mu}{X_2} + \frac{f_3(I_L, T)}{X_2} + \frac{T}{X_2} \frac{\partial}{\partial T} f_3(I_L, T)
\]
To ensure that there are no periodic orbits, we must prove that this quantity Δ does not change sign. We re-write this condition:

$$\Delta = -\frac{r_2 X_2}{K} - X_2 \frac{\partial}{\partial X_2} f_2(0, X_2, T) - \mu + f_3(0, X_2, T) + T \frac{\partial}{\partial T} f_3(0, X_2, T)$$

(5)

We know that for $X_2, T \geq 0, \Delta < 0$ by condition iv). Thus, the Dulac criterion has ensured that we will have no periodic orbits in our domain.
Global Stability

- Solutions are positive and bounded
- One equilibrium is locally stable, the other is a saddle point
- No limit cycles via Dulac

By Poincare-Bendixson, all solutions tend towards E_1^*, so the disease-free steady state is globally asymptotical stable
What do these conditions mean biologically?

i) $\mu > f_3(I_L, T)$: the death of T cells is greater than the activation of T by the cytokines

ii) $\exists X^*_2, T^* \geq 0$ such that $f_2(X^*_2, T^*) = r_2 \left(1 - \frac{X^*_2}{K}\right)$

iii) $r_2 > f_2(0, T)$: the growth rate of the AI cancer cells is larger than the death due to T cells

iv) $\mu - f_3(I_L, T) > -X_2 \frac{\partial}{\partial X_2} f_2(X, T) + T \frac{\partial}{\partial T} f_3(I_L, T) - \frac{r_2 X^*_2}{K} \forall X_2, T \geq 0$:unsure

v) \[
\left(-\frac{r_2 X^*_2}{K} - X^*_2 \frac{\partial}{\partial X_2} f_2(X^*_2, T^*)\right)\left(-\mu + f_3(I_L^*, T^*) + T^* \frac{\partial}{\partial T} f_3(I_L^*, T^*)\right) + \left(X^*_2 \frac{\partial}{\partial T} f_2(X^*_2, T^*) T^* \frac{\partial}{\partial X_2} f_3(I_L^*, T^*)\right) > 0
\] :unsure
1. Biological Introduction to Prostate Cancer and Immunotherapy

2. Previous Models

3. Our Model

4. Simulation Results

5. Theoretical Results

6. Conclusions and Further Directions
Conclusions

- Keeping total dosages the same, more frequent injections are conducive to managing prostate cancer longer
- Considered the case where injections are continuous (as in an IV)
 - Increasing e_1, the T-cell killing efficiency, disease shifts from Al relapse to stable limit cycle behavior to eradication of disease
 - Determined personalized critical dosage value v_{crit} needed to eradicate prostate cancer
- Analyzed global dynamics for the reduced system, translated some of the conditions back into biological meaning
Future work

- Finish analysis for quasi-steady state system: are there limit cycles?
- Analysis of reduced system under no medication
- Comparison to data
- Any way to loosen restrictions for global stability of either equilibrium

Acknowledgements

- Dr. Yang Kuang
- Alex P. Farrell

Questions?
Implication of cell kinetic changes during the progression of human prostatic cancer.

Nicholas Bruchovsky, Laurence Klotz, Juanita Crook, and S Larry Goldenberg.
Locally advanced prostate cancer biochemistry results from a prospective phase ii study of intermittent androgen suppression for men with evidence of prostate-specific antigen recurrence after radiotherapy.

Kirschner D. and Panetta J. C.
Modeling immunotherapy of the tumor-immune reaction.

Georg Gasteiger and Wolfgang Kastenmuller.
Foxp3+ regulatory t-cells and il-2: the moirai of t-cell fates?

Aiko Miyamura Ideta, Gouhei Tanaka, Takumi Takeuchi, and Kazuyuki Aihara.
A mathematical model of intermittent androgen suppression for prostate cancer.

Martien L Kapsenberg.
Dendritic-cell control of pathogen-driven t-cell polarization.

Michael T Lotze and Angus W Thomson.
Dendritic cells: biology and clinical applications.
Travis Portz and Yang Kuang.
A mathematical model for the immunotherapy of advanced prostate cancer.
2012.

Travis Portz, Yang Kuang, and John D Nagy.
A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy.
2012.

Steven A Rosenberg and Michael T Lotze.
Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes.

Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells.

Veerle F Surmont, Eric RE Van Thiel, Karim Vermaelen, and Jan P Van Meerbeeck.
Investigational approaches for mesothelioma.

Horst R Thieme.
Convergence results and a poincaré-bendixson trichotomy for asymptotically autonomous differential equations.